Skip to main content

Investigating STDP and LTP in a Spiking Neural Network

  • Conference paper
From Animals to Animats 9 (SAB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4095))

Included in the following conference series:

  • 1713 Accesses

Abstract

The idea that synaptic plasticity holds the key to the neural basis of learning and memory is now widely accepted in neuroscience. The precise mechanism of changes in synaptic strength has, however, remained elusive. Neurobiological research has led to the postulation of many models of plasticity, and among the most contemporary are spike-timing dependent plasticity (STDP) and long-term potentiation (LTP). The STDP model is based on the observation of single, distinct pairs of pre- and post- synaptic spikes, but it is less clear how it evolves dynamically under the input of long trains of spikes, which characterise normal brain activity. This research explores the emergent properties of a spiking artificial neural network which incorporates both STDP and LTP. Previous findings are replicated in most instances, and some interesting additional observations are made. These highlight the profound influence which initial conditions and synaptic input have on the evolution of synaptic weights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, W., et al.: Heterosynaptic metaplasticity in the hippocampus in vivo: A BCM-like modifiable threshold for LTP. PNAS 98(19), 10924–10929 (2001)

    Article  Google Scholar 

  2. Bekkers, J.M., et al.: Origin of variability in quantal size in cultured hippocampal neurons and hippocampal slices. PNAS 87, 5359–5362 (1990)

    Article  Google Scholar 

  3. Bi, G.-q., Poo, M.-m.: Synaptic modifications in cultured hippocampal neurons: de-pendence on spike timing, synaptic strength and post-synaptic cell type. Journal of Neuroscience 18, 10464–10472 (1998)

    Google Scholar 

  4. Bienenstock, E., Cooper, L., Munro, P.: Theory for the development of neuron selec-tivity: Orientation specificity and binocular interaction in the visual cortex. Journal of Neuroscience 2, 32–48 (1982)

    Google Scholar 

  5. Di Paolo, E.: Evolving spike-timing-dependent plasticity for single-trial learning in robots. Phil. Trans. R. Soc. London 361, 2299–2319 (2003)

    Article  Google Scholar 

  6. Goldenberg, E., Garcowski, J., Beer, R.: May we have your attention: Analysis of a selective attention task. In: Proc. Eighth Int. Conf. Sim. Adap. Behaviour, pp. 49–56 (2004)

    Google Scholar 

  7. Hebb, D.: The Organisation of Behaviour: A Neuropsychological theory. Wiley, New York (1949)

    Google Scholar 

  8. Iglesias, J., Eriksson, J.L., Pardo, B., Tomassini, M., Villa, A.E.P.: Stimulus-Driven Unsupervised Synaptic Pruning in Large Neural Networks. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds.) BVAI 2005. LNCS, vol. 3704, pp. 59–68. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Izhikevich, E., Desai, N.: Relating STDP to BCM. Letters to Neural Computation 15, 1511–1523 (2003)

    Article  MATH  Google Scholar 

  10. Izhikevich, E.: Which model to use for Cortical spiking neurons? IEEE Transactions on Neural Networks 15(5), 1063–1070 (2004)

    Article  Google Scholar 

  11. Izhikevich, E., Gally, J., Edelman, G.: Spike timing dynamics of neuronal groups. Cerebral Cortex 14, 933–944 (2004)

    Article  Google Scholar 

  12. Lomo, T., Bliss, T.: Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path. Journal Physioogy 232, 331–341 (1973)

    Google Scholar 

  13. Malenka, R., Nicoll, R.: Long-term potentiation – A decade of progress? Science 285, 1870–1874 (1999)

    Article  Google Scholar 

  14. Miller, K.D., McKay, D.J.: The role of constraints in Hebbian learning. Neural Computation 6, 100–126 (1994)

    Article  Google Scholar 

  15. Miller, K.D.: Synaptic economics: competition and co-operation in synaptic plasticity. Neuron 17, 371–374 (1996)

    Article  Google Scholar 

  16. Roberts, P., Bell, C.: Spike timing dependent plasticity in biological systems. Biological Cybernetics 87, 392–403 (2002)

    Article  MATH  Google Scholar 

  17. Song, S., Miller, K., Abbott, L.F.: Competitive Hebbian learning through spike timing dependent synaptic plasticity. Nature Neuroscience 3, 919–926 (2000)

    Article  Google Scholar 

  18. van Rossum, M.C.W., Bi, G.Q., Turrigiano, G.G.: Stable Hebbian learning from spike timing dependent plasticity. Journal of Neuroscience 20(23), 8812–8821 (2000)

    Google Scholar 

  19. van Rossum, M.C.W., Turrigiano, G.G.: Correlation based learning from spike timing de-pendent plasticity. Neurocomputing 38-40, 409–415 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bush, D., Philippides, A., Husbands, P., O’Shea, M. (2006). Investigating STDP and LTP in a Spiking Neural Network. In: Nolfi, S., et al. From Animals to Animats 9. SAB 2006. Lecture Notes in Computer Science(), vol 4095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840541_27

Download citation

  • DOI: https://doi.org/10.1007/11840541_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38608-7

  • Online ISBN: 978-3-540-38615-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics