Skip to main content

Why Are Evolved Developing Organisms Also Fault-Tolerant?

  • Conference paper
From Animals to Animats 9 (SAB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4095))

Included in the following conference series:

Abstract

It has been suggested that evolving developmental programs instead of direct genotype-phenotype mappings may increase the scalability of Genetic Algorithms. Many of these Artificial Embryogeny (AE) models have been proposed and their evolutionary properties are being investigated. One of these properties concerns the fault-tolerance of at least a particular class of AE, which models the development of artificial multicellular organisms. It has been shown that such AE evolves designs capable of recovering phenotypic faults during development, even if fault-tolerance is not selected for during evolution. This type of adaptivity is clearly very interesting both for theoretical reasons and possible robotic applications.

In this paper we provide empirical evidence collected from a multicellular AE model showing a subtle relationship between evolution and development. These results explain why developmental fault-tolerance necessarily emerges during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Waddington, C.: Canalization of development and the inheritance of acquired characters. Nature 150, 563–565 (1942)

    Article  Google Scholar 

  2. Stearns, S.: Progress on canalization. Proc. Natl. Acad. Sci. USA, 10229–10230 (2002)

    Google Scholar 

  3. Schmalhausen, I.: Factors of Evolution: The Theory of Stabilizing Selection. Univ. of Chicago Press, Chicago (1949) (Reprinted in 1986)

    Google Scholar 

  4. Siegal, M., Bergman, A.: Waddington’s canalization revisited: developmental stability and evolution. Proc. Natl. Acad. Sci. USA 99(16), 10528–10532 (2002)

    Article  Google Scholar 

  5. Bode, P., Bode, H.: Formation of pattern in regenerating tissue pieces of hydra attenuata. i. head-body proportion regulation. Dev. Biol. 78(2), 484–496 (1990)

    Article  Google Scholar 

  6. Zhao, M., Momma, S., Delfani, K., Calren, M., Cassidy, R., Johansson, C.B., Brismar, H., Shupliankov, O., Frisen, J., Janson, A.: Evidence for neurogenesis in the adult mammalian substantia nigra. Proc. Natl. Acad. Sci. USA 100(13), 7925–7930 (2003)

    Article  Google Scholar 

  7. Wu, D., Schneiderman, T., Burgett, J., Gokhale, P., Barthel, L., Raymond, P.A.: Cones regenerate from retinal stem cells sequestered in the inner nuclear layer of adult goldfish retina. Invest Ophthalmol. Vis. Sci. 42(9), 2115–2124 (2001)

    Google Scholar 

  8. Bentley, P., Kumar, S.: Three ways to grow designs: A comparison of embryogenies for an evolutionary design problem. In: Banzhaf, W., et al. (eds.) Proc. of GECCO 1999, pp. 35–43 (1999)

    Google Scholar 

  9. Miller, J.F.: Evolving Developmental Programs for Adaptation, Morphogenesis, and Self-Repair. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 256–265. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Federici, D., Downing, K.: Evolution and development of a multi-cellular organism: Scalability, resilience and neutral complexification. Artificial Life Journal 12(3) (in press, 2006)

    Google Scholar 

  11. Miller, J.F.: Evolving a Self-Repairing, Self-Regulating, French Flag Organism. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 129–139. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Federici, D.: The Evolutionary Emergence of Intrinsic Regeneration in Artificial Developing Organisms. In: Ijspeert, A.J., Masuzawa, T., Kusumoto, S. (eds.) BioADIT 2006. LNCS, vol. 3853, pp. 176–191. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Kindred, B.: Selection for an invariant character, vibrissa number in the house mouse. v. selection on non-tabby segregants from tabby selection lines. Genetics 55(2), 365–373 (1966)

    Google Scholar 

  14. Maynard-Smith, J., Sondhi, K.: The genetics of a pattern. Genetics 45(8), 1039–1050 (1960)

    Google Scholar 

  15. Federici, D.: A regenerating spiking neural network. Neural Networks 18(5-6), 746–754 (2005)

    Article  Google Scholar 

  16. Liu, H., Miller, J., Tyrrel, A.: Intrinsic evolvable hardware implementation of a robust biological development model for digital systems. In: Proc. of the 6th NASA Conference on Evolvable Hardware, pp. 87–92 (2005)

    Google Scholar 

  17. Wagner, A.: Robustness against mutations in genetic networks of yeast. Nature Genetics 24, 355–361 (2000)

    Article  Google Scholar 

  18. Stanley, K., Miikulainen, R.: A taxonomy for artificial embryogeny. Artificial Life 9(2), 93–130 (2003)

    Article  Google Scholar 

  19. Kitano, H.: Designing neural networks using genetic algorithms with graph generation system. Complex Systems 4(4), 461–476 (1990)

    MATH  Google Scholar 

  20. Gruau, F.: Neural Network Synthesis using Cellular Encoding and the Genetic Algorithm. PhD thesis, Ecole Normale Superieure de Lyon (1994)

    Google Scholar 

  21. Hornby, G., Pollack, J.: Body-brain co-evolution using L-systems as a generative encoding. In: Spector, L., et al. (eds.) Proc. of the Genetic and Evolutionary Computation Conference, GECCO 2001, pp. 868–875. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  22. Hornby, G., Pollack, J.: The advantages of generative grammatical encodings for physical design. In: Proc. of the 2001 Congress on Evolutionary Computation, CEC 2001, pp. 600–607. IEEE Press, Los Alamitos (2001)

    Chapter  Google Scholar 

  23. Bongard, J.: Evolving modular genetic regulatory networks. In: Proc. of the 2002 Congress on Evolutionary Computation (CEC 2002), pp. 1872–1877. IEEE Press, Piscataway (2002)

    Chapter  Google Scholar 

  24. Dellaert, F., Beer, R.: Toward an evolvable model of development for autonomous agent synthesis. In: Brooks, R., Maes, P. (eds.) Proc. of Artificial Life IV, pp. 246–257. MIT Press, Cambridge (1994)

    Google Scholar 

  25. Eggenbergen-Hotz, P.: Evolving morphologies of simulated 3d organisms based on differential gene expression. In: Husbands, P., Harvey, I. (eds.) Proc. of the 4th European Conference on Artificial Life (ECAL 1997), pp. 205–213 (1997)

    Google Scholar 

  26. Cangelosi, A., Nolfi, S., Parisi, D.: Cell division and migration in a ’genotype’ for neural networks. Network: Computation in Neural Systems 5, 497–515 (1994)

    Article  MATH  Google Scholar 

  27. Ohno, S.: Evolution by Gene Duplication. Springer, Heidelberg (1970)

    Google Scholar 

  28. Nowak, M.: What is a quasi-species? Trends Ecol. Evol. 7, 118–121 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Federici, D., Ziemke, T. (2006). Why Are Evolved Developing Organisms Also Fault-Tolerant?. In: Nolfi, S., et al. From Animals to Animats 9. SAB 2006. Lecture Notes in Computer Science(), vol 4095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840541_37

Download citation

  • DOI: https://doi.org/10.1007/11840541_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38608-7

  • Online ISBN: 978-3-540-38615-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics