Skip to main content

An Unsupervised Learning Rule for Class Discrimination in a Recurrent Neural Network

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4131))

Included in the following conference series:

  • 3185 Accesses

Abstract

A number of well-known unsupervised feature extraction neural network models are present in literature. The development of unsupervised pattern classification systems, although they share many of the principles of the aforementioned network models, has proven to be more elusive. This paper describes in detail a neural network capable of performing class separability through self-organizing Hebbian like dynamics, i.e., the network is able to autonomously find classes of patterns without the help from any external agent. The model is built around a recurrent network performing winner-takes-all competition. Automatic labelling of input data samples is based upon the induced activity pattern after presentation of the sample. Neurons compete against each other through recurrent interactions to code the input sample. Resulting active neurons update their parameters to improve the classification process. The learning dynamics are moreover absolutely stable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81 (1984)

    Google Scholar 

  2. Hopfield, J.J., Tank, D.W.: Neural computation of decisions in optimization problems. Biological Cybernetics 52, 141–152 (1985)

    MATH  MathSciNet  Google Scholar 

  3. Kulkarni, S.R., Lugosi, G., Venkatesh, S.S.: Learning pattern classification – a survey. IEEE Transactions on Information Theory 44(6), 2178–2206 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Zhang, G.P.: Neural networks for classification: A survey. IEEE Transactions on Systems, Man and Cybernetics–Part C: Applications and Reviews 30(4), 451–462 (2000)

    Article  Google Scholar 

  5. Bienenstock, E.L., Cooper, L.N., Munro, P.W.: Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. The Journal of Neuroscience 2(1), 32–48 (1982)

    Google Scholar 

  6. Hyvärinen, A., Oja, E.: Independent component analysis by general non-linear hebbian-like learning rules. Signal Processing (1998)

    Google Scholar 

  7. Dayan, P., Abbott, L.F.: Theoretical Neuroscience. Computational Neuroscience. MIT press, Cambridge (2001)

    MATH  Google Scholar 

  8. Amari, S.I.: Dynamic stability for formation of cortical maps. In: Arbib, M.A., Amari, S.I. (eds.) Dynamic Interactions in Neural Networks: Models and Data. Research notes in Neural Computing, vol. 1, pp. 15–34. Springer, Heidelberg (1989)

    Google Scholar 

  9. Ermentrout, B., Osan, R.: Models for pattern formation in development. In: Champneys, J.S., Krauskopf, A.R., di Bernardo, B., Wilson, M., Osinga, R.E., Homer, H.M.,, M.E. (eds.) Nonlinear Dynamics and Chaos. Where do we go from here?, pp. 321–347. Institute of Physics Publishing (2003)

    Google Scholar 

  10. Kohonen, T.: Self-organizing Maps, 3rd edn. Information Sciences, vol. 30. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  11. Oja, E.: Principal components, minor components, and linear neural networks. Neural Networks 5, 927–935 (1992)

    Article  Google Scholar 

  12. Bie, T.D., Cristianini, N., Rosipal, R.: Eigenproblems in pattern recognition. In: Handbook of Computational Geometry for Pattern Recognition, Computer Vision, Neurocomputing and Robotics. E. bayro-corrochano edn. Springer, Heidelberg

    Google Scholar 

  13. Burges, C.J.C.: Geometric methods for feature extraction and dimensional reduction. In: Rokach, L., Maimon, O. (eds.) Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers, Kluwer Academic Publishers, Dordrecht (2005)

    Google Scholar 

  14. Chatterjee, C., Roychowdhury, V.P.: On self-organizing algorithms and networks for class-separability features. IEEE Transactions on Neural Networks 8(3), 663–678 (1997)

    Article  Google Scholar 

  15. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)

    Article  Google Scholar 

  16. Vogels, T.P., Rajan, K., Abbott, L.F.: Neural network dynamics. Annual Reviews Neuroscience 28 (2005)

    Google Scholar 

  17. Perko, L.: Differential Equations and Dynamical Systems. Texts in Applied Mathematics. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  18. Atick, J.J., Redlich, A.N.: Predicting ganglion and simple cell receptive field organizations. International Journal of Neural Systems 1(4), 305–315 (1990)

    Article  Google Scholar 

  19. Dong, D.W., Atick, J.J.: Temporal decorrelation: A theory of lagged and nonlagged responses in the lateral geniculate nucleus. Network: Computation in Neural Systems 6(2), 159–178 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de la Cruz Gutiérrez, J.P. (2006). An Unsupervised Learning Rule for Class Discrimination in a Recurrent Neural Network. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840817_44

Download citation

  • DOI: https://doi.org/10.1007/11840817_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38625-4

  • Online ISBN: 978-3-540-38627-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics