Skip to main content

Nonlinear Projection Using Geodesic Distances and the Neural Gas Network

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4131))

Included in the following conference series:

Abstract

A nonlinear projection method that uses geodesic distances and the neural gas network is proposed. First, the neural gas algorithm is used to obtain codebook vectors, and a connectivity graph is concurrently created by using competitive Hebbian rule. A procedure is added to tear or break non-contractible cycles in the connectivity graph, in order to project efficiently ‘circular’ manifolds such as cylinder or torus. In the second step, the nonlinear projection is created by applying an adaptation rule for codebook positions in the projection space. The mapping quality obtained with the proposed method outperforms CDA and Isotop, in terms of the trustworthiness, continuity, and topology preservation measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling, 2nd edn. Chapman & Hall/CRC (2001)

    Google Scholar 

  2. Demartines, P., Hérault, J.: Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets. IEEE Trans. on Neural Networks 8, 148–154 (1997)

    Article  Google Scholar 

  3. Dijkstra, F.W.: A note on two problems in connection with graphs. Num. Math. 1, 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  4. Estévez, P.A., Chong, A.M.: Geodesic Nonlinear Projection using the Neural Gas Network. In: Int. Joint Conference on Neural Networks, Vancouver, Canada (2006) (to appear)

    Google Scholar 

  5. Estévez, P.A., Figueroa, C.J.: Online data visualization using the neural gas network. Neural Networks (2006) (in press)

    Google Scholar 

  6. Estévez, P.A., Figueroa, C.J.: Online nonlinear mapping using the neural gas network. In: Proceedings of the Workshop on Self-Organizing Maps (WSOM 2005), pp. 299–306 (2005)

    Google Scholar 

  7. Kaski, S., Nikkilä, J., Oja, M., Venna, J., Törönen, P., Castrén, E.: Trustworthiness and metrics in visualizing similarity of gene expression. BMC Bioinformatics 4, 48 (2003)

    Article  Google Scholar 

  8. Kohonen, T.: Self–Organizing Maps. Springer, Berlin (1995)

    Google Scholar 

  9. König, A.: Interactive visualization and analysis of hierarchical neural projections for data mining. IEEE Trans. on Neural Networks 11, 615–624 (2000)

    Article  Google Scholar 

  10. Lee, J.A., Verleysen, M.: Nonlinear dimensionality reduction of data manifolds with essential loops. Neurocomputing 67, 29–53 (2005)

    Article  Google Scholar 

  11. Lee, J.A., Lendasse, A., Verleysen, M.: Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis. Neurocomputing 57, 49–76 (2004)

    Article  Google Scholar 

  12. Lee, J.A., Verleysen, M.: Nonlinear projection with the Isotop method. In: Proceedings of the International Conference on Artificial Neural Networks, pp. 933–938 (2002)

    Google Scholar 

  13. Lee, J.A., Lendasse, A., Donckers, N., Verleysen, M.: A robust nonlinear projection method. In: Proceedings of European Symposium on Artificial Neural Networks (ESSAN 2000), pp. 13–20 (2000)

    Google Scholar 

  14. Martinetz, T.M., Schulten, K.J.: Topology representing networks. Neural Networks 7, 507–522 (1994)

    Article  Google Scholar 

  15. Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: Neural gas network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks 4, 558–569 (1993)

    Article  Google Scholar 

  16. Martinetz, T.M., Schulten, K.J.: A neural gas network learns topologies. Artificial Neural Networks, pp. 397–402. Elsevier, Amsterdam (1991)

    Google Scholar 

  17. Prim, R.C.: Shortest connection networks and some generalizations. Bell System Tech. J. 36, 1389–1401 (1957)

    Google Scholar 

  18. Venna, J., Kaski, S.: Local multidimensional scaling with controlled tradeoff between trustworthiness and continuity. In: Proceedings of the Workshop on Self-Organizing Maps (WSOM 2005), pp. 695–702 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Estévez, P.A., Chong, A.M., Held, C.M., Perez, C.A. (2006). Nonlinear Projection Using Geodesic Distances and the Neural Gas Network. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840817_49

Download citation

  • DOI: https://doi.org/10.1007/11840817_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38625-4

  • Online ISBN: 978-3-540-38627-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics