Skip to main content

Neural Model of Dopaminergic Control of Arm Movements in Parkinson’s Disease Bradykinesia

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4131))

Included in the following conference series:

Abstract

Patients suffering from Parkinson’s disease display a number of symptoms such a resting tremor, bradykinesia, etc. Bradykinesia is the hallmark and most disabling symptom of Parkinson’s disease1 (PD). Herein, a basal ganglia-cortico-spinal circuit for the control of voluntary arm movements in PD bradykinesia is extended by incorporating DAergic innervation of cells in the cortical and spinal components of the circuit. The resultant model simulates successfully several of the main reported effects of DA depletion on neuronal, electromyographic and movement parameters of PD bradykinesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albin, R.L., Young, A.B., Penney, J.B.: The functional anatomy of basal ganglia disorders. Trends in Neurosciences 12, 366–375 (1989)

    Article  Google Scholar 

  2. Bullock, D., Contreras-Vidal, J.L.: How spinal neural networks reduce discrepancies between motor intention and motor realization. In: Newel, K., Corcos, D. (eds.) Variability and motor control, Champaign, IL, pp. 183–221. Human Kinetics Press, Champaign (1993)

    Google Scholar 

  3. Bullock, D., Grossberg, S.: Neural dynamics of planned arm movements: Emergent invariants and speed-accuracy properties during trajectory formation. Psychological Review 95, 49–90 (1988)

    Article  Google Scholar 

  4. Bullock, D., Grossberg, S.: VITE and FLETE: Neural modules for trajectory formation and tension control. In: Hershberger, W. (ed.) Volitional action, pp. 253–297. North-Holland, Amsterdam (1992)

    Google Scholar 

  5. Bullock, D., Grossberg, S.: Adaptive neural networks for control of movement trajectories invariant under speed and force rescaling. Human Movement Science 10, 3–53 (1991)

    Article  Google Scholar 

  6. Bullock, D., Grossberg, S.: Emergence of triphasic muscle activation from the nonlinear interactions of central and spinal neural networks circuits. Human Movement Science 11, 157–167 (1992)

    Article  Google Scholar 

  7. Bullock, D., Cisek, P., Grossberg, S.: Cortical networks for control of voluntary arm movements under variable force conditions. Cerebral Cortex 8, 48–62 (1998)

    Article  Google Scholar 

  8. Contreras-Vidal, J.L., Grossberg, S., Bullock, D.: A neural model of cerebellar learning for arm movement control: Cortico-spino-cerebellar dynamics. Learning and Memory 3(6), 475–502 (1997)

    Article  Google Scholar 

  9. Humphrey, D.R., Reed, D.J.: Separate cortical systems for control of joint movement and joint stiffness: Reciprocal activation and coactivation of antagonist muscles. In: Desmedt, J.E. (ed.) Motor control mechanisms in health and disease. Raven Press, New York (1983)

    Google Scholar 

  10. Doudet, D.J., Gross, C., Arluison, M., Bioulac, B.: Modifications of precentral cortex discharge and EMG activity in monkeys with MPTP induced lesions of DA nigral lesions. Experimental Brain Research 80, 177–188 (1990)

    Article  Google Scholar 

  11. Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics 6, 19–26 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cutsuridis, V., Perantonis, S.: A Neural Model of Parkinson’s Disease Bradykinesia. Neural Networks (in press)

    Google Scholar 

  13. Cutsuridis, V.: A neural network model of normal and Parkinsonian EMG activity of fast arm movements. Book of abstracts of the 18 Conference of Hellenic Society for Neuroscience, Athens, Greece, October 17-19 (2003)

    Google Scholar 

  14. Cutsuridis, V., Bullock, D.: A Neural Circuit Model of the Effects of Cortical Dopamine Depletion on Task-Related Discharge Patterns of Cells in the Primary Motor Cortex. In: Rethymnon, Crete, Book of abstracts of the 17th Conference of Hellenic Society for Neuroscience, Poster 3, October 4-6, 2002, p. 39 (2002)

    Google Scholar 

  15. Cutsuridis, V., Bullock, D.: A Neural Circuit Model of the Effects of Cortical Dopamine Depletion on Task-Related Discharge Patterns of Cells in the Primary Motor Cortex. Poster Session II: Sensory-Motor Control and Robotics, Book of abstracts of the 6th International Neural Network Conference, Boston, MA, May 30 - June 1 (2002)

    Google Scholar 

  16. Stelmach, G.E., Teasdale, N., Phillips, J., Worringham, C.J.: Force production characteristics in Parkinson’s disease. Exp. Brain Res. 76, 165–172 (1989)

    Article  Google Scholar 

  17. Rand, M.K., Stelmach, G.E., Bloedel, J.R.: Movement Accuracy Constraints in Parkinson’s Disease Patients. Neuropsychologia 38, 203–212 (2000)

    Article  Google Scholar 

  18. Camarata, P.J., Parker, P.G., Park, S.K., Haines, S.J., Turner, D.A., Chae, H., Ebner, T.J.: Effects of MPTP induced hemiparkinsonism on the kinematics of a two-dimensional, multi-joint arm movement in the rhesus monkey. Neuroscience 48(3), 607–619 (1992)

    Article  Google Scholar 

  19. Tremblay, L., Filion, M., Bedard, P.J.: Responses of pallidal neurons to striatal stimulation in monkeys with MPTP-induced parkinsonism. Brain Research 498(1), 17–33 (1989)

    Article  Google Scholar 

  20. Godaux, E., Koulischer, D., Jacquy, J.: Parkinsonian bradykinesia is due to depression in the rate of rise of muscle activity. Annals of Neurology 31(1), 93–100 (1992)

    Article  Google Scholar 

  21. Benazzouz, A., Gross, C., Dupont, J., Bioulac, B.: MPTP induced hemiparkinsonism in monkeys: Behavioral, mechanographic, electromyographic and immunohistochemical studies. Experimental Brain Research 90, 116–120 (1992)

    Article  Google Scholar 

  22. Hallett, M., Khoshbin, S.: A physiological mechanism of bradykinesia. Brain 103, 301–314 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cutsuridis, V. (2006). Neural Model of Dopaminergic Control of Arm Movements in Parkinson’s Disease Bradykinesia. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840817_61

Download citation

  • DOI: https://doi.org/10.1007/11840817_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38625-4

  • Online ISBN: 978-3-540-38627-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics