Skip to main content

Online Stabilization of Chaotic Maps Via Support Vector Machines Based Generalized Predictive Control

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4131))

Included in the following conference series:

  • 3189 Accesses

Abstract

In this study, the previously proposed Online Support Vector Machines Based Generalized Predictive Control method [1] is applied to the problem of stabilizing discrete-time chaotic systems with small parameter perturbations. The method combines the Accurate Online Support Vector Regression (AOSVR) algorithm [2] with the Support Vector Machines Based Generalized Predictive Control (SVM-Based GPC) approach [3] and thus provides a powerful scheme for controlling chaotic maps in an adaptive manner. The simulation results on chaotic maps have revealed that Online SVM-Based GPC provides an excellent online stabilization performance and maintains it when some measurement noise is added to output of the underlying map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Iplikci, S.: Online trained support vector machines based generalized predictive control of nonlinear systems. under review

    Google Scholar 

  2. Ma, J., Theiler, J., Perkins, S.: Accurate online support vector regression. Neural Computation 15, 2683–2703 (2003)

    Article  MATH  Google Scholar 

  3. Iplikci, S.: Support vector machines based generalized predictive control, under review

    Google Scholar 

  4. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phy. Rev. Lett. 64, 1196–1199 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Clarke, D.W., Mohtadi, C., Tuffs, P.C.: Generalized predictive control - part 1: the basic algorithm. Automatica 23, 137–148 (1987)

    Article  MATH  Google Scholar 

  6. Clarke, D.W., Mohtadi, C., Tuffs, P.C.: Generalized predictive control - part 2: the basic algorithm. Automatica 23, 149–163 (1987)

    Article  MATH  Google Scholar 

  7. Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11, 733–764 (2003)

    Article  Google Scholar 

  8. Soloway, D., Haley, P.J.: Neural generalized predictive control: a Newton-Raphson algorithm. In: Proc. of the IEEE Int’l Sym. on Int. Cont., MI, pp. 277–282 (1996)

    Google Scholar 

  9. Chen, L., Chen, G.: Fuzzy modeling, prediction, and control of uncertain chaotic systems based on time series. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 47, 1527–1531 (2000)

    Article  MATH  Google Scholar 

  10. Choi, J.T., Choi, Y.H.: Fuzzy neural network based predictive control of chaotic nonlinear systems. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences E87A(5), 1270–1279 (2004)

    Google Scholar 

  11. Iplikci, S.: Support Vector Machines based generalized predictive control of chaotic systems (accepted for publication)

    Google Scholar 

  12. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Op. Res. Springer, New York (1999)

    Book  MATH  Google Scholar 

  13. Venkataraman, P.: Applied optimization with MATLAB programming. John Wiley and Sons, New York (2002)

    Google Scholar 

  14. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  15. Vapnik, V.: Statistical Learning Theory. John Wiley, New York (1998)

    MATH  Google Scholar 

  16. Vapnik, V.: The Support Vector Method of Function Estimation. Nonlinear Modeling Advanced Black Box Techniques. Kluwer Academic Publishers, Boston (1998)

    Google Scholar 

  17. Cristianini, N., Taylor, J.S.: An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, New York (2000)

    Google Scholar 

  18. Schölkopf, B., Burges, C.J.C., Smola, A.J.: Advances in kernel methods: Support Vector Learning. The MIT Press, Cambridge (1999)

    Google Scholar 

  19. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. NeuroCOLT Tech. Rep. No. NC-TR-98-030. Royal Holloway College, Univ. of London (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iplikci, S. (2006). Online Stabilization of Chaotic Maps Via Support Vector Machines Based Generalized Predictive Control. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840817_90

Download citation

  • DOI: https://doi.org/10.1007/11840817_90

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38625-4

  • Online ISBN: 978-3-540-38627-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics