Skip to main content

Extracting Motion Primitives from Natural Handwriting Data

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4132))

Included in the following conference series:

Abstract

For the past 10 years it has become clear that biological movement is made up of sub-routine type blocks, or motor primitives, with a central controller timing the activation of these blocks, creating synergies of muscle activation. This paper shows that it is possible to use a factorial hidden Markov model to infer primitives in handwriting data. These primitives are not predefined in terms of location of occurrence within the handwriting, and they are not limited or defined by a particular character set. Also, the variation in the data can to a large extent be explained by timing variation in the triggering of the primitives. Once an appropriate set of primitives has been inferred, the characters can be represented as a set of timings of primitive activations, along with variances, giving a very compact representation of the character. Separating the motor system into a motor primitive part, and a timing control gives us a possible insight into how we might create scribbles on paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bizzi, E., d’Avella, A., Saltiel, P., Trensch, M.: Modular organization of spinal motor systems. The Neuroscientist 8(5), 437–442 (2002)

    Article  Google Scholar 

  2. Bizzi, E., Giszter, S.F., Loeb, E., Mussa-Ivaldi, F.A., Saltiel, P.: Modular organization of motor behavior in the frog’s spinal cord. Trends in Neurosciences 18(10), 442–446 (1995)

    Article  Google Scholar 

  3. d’Avella, A., Bizzi, E.: Shared and specific muscle synergies in natural motor behaviors. PNAS 102(8), 3076–3081 (2005)

    Article  Google Scholar 

  4. d’Avella, A., Saltiel, P., Bizzi, E.: Combinations of muscle synergies in the construction of a natural motor behavior. Nature Neuroscience 6(3), 300–308 (2003)

    Article  Google Scholar 

  5. Davidson, P.R., Wolpert, D.M.: Motor learning and prediction in a variable environment. Curr. Opinion in Neurobiology 13, 1–6 (2003)

    Article  Google Scholar 

  6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm (with discussion). J. R. Statist. Soc. B 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  7. Dennis, M., Edelstein, K., Hetherington, R., Copeland, K., Frederick, J., Blaser, S.E., Kramer, L.A., Drake, J.M., Brandt, M., Fletcher, J.M.: Neurobiology of perceptual and motor timing in children with spina bifida in relation to cerebellar volume. Brain (2004)

    Google Scholar 

  8. Fod, A., Mataric, M.J., Jenkins, O.C.: Automated derivation of primitives for movement classification. Autonomous robots 12(1), 39–54 (2002)

    Article  MATH  Google Scholar 

  9. Ghahramani, Z., Jordan, M.I.: Factorial hidden Markov models. Machine Learning 29, 245–275 (1997)

    Article  MATH  Google Scholar 

  10. Ijspeert, A., Nakanishi, J., Schaal, S.: Learning attractor lanscapes for motor primitives, vol. 15. MIT Press, Cambridge (2003)

    Google Scholar 

  11. Kargo, W.J., Giszter, S.F.: Rapid corrections of aimed movements by combination of force-field primitives. J. Neurosci. 20, 409–426 (2000)

    Google Scholar 

  12. Matarić, M.J.: Primitives-based humanoid control and imitation. Technical report, DARPA MARS project (2004)

    Google Scholar 

  13. Meegan, D.V., Aslin, R.N., Jacobs, R.A.: Motor timing learned without motor training. Nature Neuroscience 3(9), 860–862 (2000)

    Article  Google Scholar 

  14. Penhume, V.B., Zatorre, R.J., Evans, A.C.: Cerebellar contributions to motor timing: A pet study of auditory and visual rythm reproduction. Journal of Cognative Neuroscience 10(6), 752–765 (1998)

    Article  Google Scholar 

  15. Schaal, S.P., Nakanishi, J., Ijspeert, A.: Learning movement primitives. In: ISRR 2003 (2004)

    Google Scholar 

  16. Todorov, E., Jordan, M.I.: Optimal feedback control as a theory of motor coordination. Nature Neuroscience 5(11), 1226–1235 (2002)

    Article  Google Scholar 

  17. Wolpert, D.M., Ghahramani, Z., Flanagan, J.R.: Perspectives and problems in motor learning. TRENDS in Cog. Sci. 5(11), 487–494 (2001)

    Article  Google Scholar 

  18. Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Networks 11, 1317–1329 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Williams, B.H., Toussaint, M., Storkey, A.J. (2006). Extracting Motion Primitives from Natural Handwriting Data. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840930_66

Download citation

  • DOI: https://doi.org/10.1007/11840930_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38871-5

  • Online ISBN: 978-3-540-38873-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics