Skip to main content

Competitive and Collaborative Mixtures of Experts for Financial Risk Analysis

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4132))

Included in the following conference series:

  • 1320 Accesses

Abstract

We compare the performance of competitive and collaborative strategies for mixtures of autoregressive experts with normal innovations for conditional risk analysis in financial time series. The prediction of the mixture of collaborating experts is an average of the outputs of the experts. If a competitive strategy is used the prediction is generated by a single expert. The expert that becomes activated is selected either deterministically (hard competition) or at random, with a certain probability (soft competition). The different strategies are compared in a sliding window experiment for the time series of log-returns of the Spanish stock index IBEX 35, which is preprocessed to account for the heteroskedasticity of the series. Experiments indicate that the best performance for risk analysis is obtained by mixtures with soft competition, where the experts have a probability of activation given by the output of a gating network of softmax units.

This work has been supported by the Spanish Dirección General de Investigació n, project TIN2004-07676-C02-02. J. M. Hernández-Lobato acknowledges the support of Universidad Autónoma de Madrid under an FPU grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jorion, P.: Value at Risk. McGraw-Hill Professional, New York (2000)

    Google Scholar 

  2. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Mathematical Finance 9(3), 203–228 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cont, R.: Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance 1(2), 223–236 (2001)

    Article  Google Scholar 

  4. Kon, S.J.: Models of stock returns–a comparison. Journal of Finance 39(1), 147–165 (1984)

    Article  Google Scholar 

  5. Mandelbrot, B.: The variation of certain speculative prices. Journal of Business 36(4), 394–419 (1963)

    Article  Google Scholar 

  6. Fama, E.F., French, K.R.: Permanent and temporary components of stock prices. The Journal of Political Economy 96(2), 243–276 (1988)

    Article  Google Scholar 

  7. Akgiray, V.: Conditional heteroscedasticity in time series of stock returns: Evidence and forecasts. The Journal of Business 62(1), 55–80 (1989)

    Article  Google Scholar 

  8. Engle, R.: Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation. Econometrica 50, 987–1008 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bollerslev, T.: Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics 31, 307–327 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Suárez, A.: Mixtures of autoregressive models for financial risk analysis. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, p. 1186. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Vidal, C., Suárez, A.: Hierarchical mixtures of autoregressive models for time-series modeling. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 597–606. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Jacobs, R.A., Jordan, M.I., Nowlan, S., Hinton, G.E.: Adaptive mixtures of local experts. Neural Computation 3, 1–12 (1991)

    Article  Google Scholar 

  13. Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm. Neural Computation 6, 181–214 (1994)

    Article  Google Scholar 

  14. Sociedad de Bolsas: Histórico Cierres Índices Ibex (2006), http://www.sbolsas.es

  15. Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  16. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1996)

    Google Scholar 

  17. Jacobs, R.A., Jordan, M.I., Barto, A.G.: Task decompostiion through competition in a modular connectionist architecture: The what and where vision tasks. Machine Learning: From Theory to Applications, 175–202 (1993)

    Google Scholar 

  18. Mathworks: Matlab Optimization toolbox 2.2. Mathworks, Inc., Natick (2002)

    Google Scholar 

  19. Hamilton, J.D.: A quasi-bayesian approach to estimating parameters for mixtures of normal distributions. Journal of Business & Economic Statistics 9(1), 27–39 (1991)

    Article  MathSciNet  Google Scholar 

  20. Rosenblatt, M.: Remarks on a multivariate transformation. The Annals of Mathematical Statistics 23(3), 470–472 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kerkhof, J., Melenberg, B.: Backtesting for risk-based regulatory capital. Journal of Banking & Finance 28(8), 1845–1865 (2004)

    Article  Google Scholar 

  22. Kupiec, H.: Techniques for verifying the accuracy of risk management models. Journal of Derivatives 3 (1995)

    Google Scholar 

  23. van der Vaart, A.W.: Asymptotic Statistics. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  24. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin 1(6), 80–83 (1945)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hernández-Lobato, J.M., Suárez, A. (2006). Competitive and Collaborative Mixtures of Experts for Financial Risk Analysis. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840930_72

Download citation

  • DOI: https://doi.org/10.1007/11840930_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38871-5

  • Online ISBN: 978-3-540-38873-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics