Skip to main content

Kernel Regression Based Short-Term Load Forecasting

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4132))

Included in the following conference series:

  • 1357 Accesses

Abstract

Electrical load forecasting is an important tool in managing transmission and distribution facilities, financial resources, manpower, and materials at electrical power utility companies. A simple and accurate electrical load forecasting scheme is required. Short-term load forecasting (STLF) involves predicting the load from few hours to a week ahead. A simple non-parametric kernel regression (KR) approach for STLF is presented. Kernel regression is a linear approach with the ability to handle nonlinear information. A Gaussian kernel whose bandwidth selected by the Direct Plug-in (DPI) method is utilized. The performance comparison of the proposed method with artificial neural network (ANN), ordinary least squares (OLS), and ridge regression (RR) predictions on the same data set is presented. Experimental results show that kernel regression performs better than ANN forecaster on the given data set. The method proposed provides analytical solution, features optimal bandwidth selection, which is more instructive compared to ANN architecture and its other parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alves da Silva, A.P., Moulin, L.S.: Confidence intervals for neural network based short-term load forecasting. IEEE Trans. Power Sys. 15(4), 1191–1196 (2000)

    Article  Google Scholar 

  2. Atkeson, C.G., Moore, A.W., Schaal, S.: Locally Weighted Learning. Art. Intell. Review. 11, 11–73 (1997)

    Article  Google Scholar 

  3. Bartkiewicz, W., Gontar, Z., Zielinski, J.S., Bardzki, W.: Uncertainty of the short-term electrical load forecasting in utilities. Int. Joint Conf. on Neural Networks 6, 235–240 (2000)

    Google Scholar 

  4. Charytoniuk, W., Chen, M.S.: Very short-term load forecasting using neural networks. IEEE Trans. Power Sys. 15(1), 263–268 (2000)

    Article  Google Scholar 

  5. Daneshdoost, M., Lotfalian, M., Bumroonggit, G., Ngoy, J.P.: Neural network with fuzzy set-based classification for short-term load forecasting. IEEE Trans. Power Sys. 13(4), 1386–1391 (1998)

    Article  Google Scholar 

  6. Gao, R., Tsoukalas, L.H.: Neural-wavelet methodology for load forecasting. J. of Intell. and Robotic Sys. 31, 149–157 (2001)

    Article  MATH  Google Scholar 

  7. Gao, R., Wang, X., Bougaev, A., Schooley, D.C., Tsoukalas, L.H.: Short-term elasticities via Intelligent tools for modern power systems. In: IEEE MedPower 2002 3rd Mediterranean Conference and Exhibition on Power Generation, Transmission, Distribution and Energy Conversion (2002)

    Google Scholar 

  8. Hippert, S.H., Pedreira, C.E., Souza, R.C.: Neural networks for short-term load forecasting: A review and evaluation. IEEE Trans. Power Sys. 16(1), 44–55 (2001)

    Article  Google Scholar 

  9. Papalexopoulos, A.D., Hesterberg, T.C.: A regression-based approach to shortterm system load forecasting. IEEE Trans. Power Sys. 5(4), 1535–1547 (1990)

    Article  Google Scholar 

  10. Ranaweera, D.K., Hubele, N.F., Papalexopoulos, A.D.: Application of radial basis function neural network model for short-term load forecasting. Proc. IEE– Gen. Trans. Distri. 142(1), 45–50 (1995)

    Article  Google Scholar 

  11. Ruppert, D., Sheather, S.J., Wand, M.P.: An effective bandwidth selector for local least squares regression. J. of the Amer. Stat. Asso. 90(432), 1257–1270 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Vila, J.P., Wagner, V., Neveu, P.: Recurrent neural network for short-term load forecasting. IEEE Trans. Power Sys. 13(1), 126–132 (1998)

    Article  Google Scholar 

  13. Wand, M.P., Jones, M.C.: Kernel Smoothing. CRC Press, Florida (2000)

    Google Scholar 

  14. Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks: The state of the art. Int. J. of Forecasting 14, 35–62 (1998)

    Article  Google Scholar 

  15. Zhang, B.L., Dong, Z.Y.: An adaptive neural-wavelet model for short-term load forecasting. Electric Power Sys. Research 59, 121–129 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agarwal, V., Bougaev, A., Tsoukalas, L. (2006). Kernel Regression Based Short-Term Load Forecasting. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840930_73

Download citation

  • DOI: https://doi.org/10.1007/11840930_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38871-5

  • Online ISBN: 978-3-540-38873-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics