Skip to main content

Evolutionary Optimization of Sequence Kernels for Detection of Bacterial Gene Starts

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4132))

Included in the following conference series:

  • 1290 Accesses

Abstract

Oligo kernels for biological sequence classification have a high discriminative power. A new parameterization for the K-mer oligo kernel is presented, where all oligomers of length K are weighted individually. The task specific choice of these parameters increases the classification performance and reveals information about discriminative features. For adapting the multiple kernel parameters based on cross-validation the covariance matrix adaptation evolution strategy is proposed. It is applied to optimize the trimer oligo kernel for the detection of prokaryotic translation initiation sites. The resulting kernel leads to higher classification rates, and the adapted parameters reveal the importance for classification of particular triplets, for example of those occurring in the Shine-Dalgarno sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schölkopf, B., Tsuda, K., Vert, J.P. (eds.): Kernel Methods in Computational Biology. Computational Molecular Biology. MIT Press, Cambridge (2004)

    Google Scholar 

  2. Meinicke, P., Tech, M., Morgenstern, B., Merkl, R.: Oligo kernels for datamining on biological sequences: A case study on prokaryotic translation initiation sites. BMC Bioinformatics 5 (2004)

    Google Scholar 

  3. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Machine Learning 46, 131–159 (2002)

    Article  MATH  Google Scholar 

  4. Glasmachers, T., Igel, C.: Gradient-based adaptation of general Gaussian kernels. Neural Computation 17, 2099–2105 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Keerthi, S.S.: Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. IEEE Transactions on Neural Networks 13, 1225–1229 (2002)

    Article  Google Scholar 

  6. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9, 159–195 (2001)

    Article  Google Scholar 

  7. Friedrichs, F., Igel, C.: Evolutionary tuning of multiple SVM parameters. Neurocomputing 64, 107–117 (2005)

    Article  Google Scholar 

  8. Igel, C., Wiegand, S., Friedrichs, F.: Evolutionary optimization of neural systems: The use of self-adaptation. In: Trends and Applications in Constructive Approximation. International Series of Numerical Mathematics, vol. 151, pp. 103–123. Birkhäuser Verlag, Basel (2005)

    Chapter  Google Scholar 

  9. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  10. Degroeve, S., Beats, B.D., de Peer, Y.V., Rouzé, P.: Feature subset selection for splice site prediction. Bioinformatics 18, 75–83 (2002)

    Google Scholar 

  11. Leslie, C., Eskin, E., Noble, W.S.: The spectrum kernel: A string kernel for SVM protein classification. In: Altman, R.B., et al. (eds.) Proceedings of the Pacific Symposium on Biocomputing, pp. 564–575. World Scientific, Singapore (2002)

    Google Scholar 

  12. Eads, D.R., et al.: Genetic algorithms and support vector machines for time series classification. In: Bosacchi, B., Fogel, D.B., Bezdek, J.C. (eds.) Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation V, Proceedings of the SPIE, vol. 4787, pp. 74–85 (2002)

    Google Scholar 

  13. Fröhlich, H., Chapelle, O., Schölkopf, B.: Feature selection for support vector machines using genetic algorithms. International Journal on Artificial Intelligence Tools 13, 791–800 (2004)

    Article  Google Scholar 

  14. Igel, C.: Multi-objective model selection for support vector machines. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 534–546. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Jong, K., Marchiori, E., van der Vaart, A.: Analysis of proteomic pattern data for cancer detection. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 41–51. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Miller, M.T., Jerebko, A.K., Malley, J.D., Summers, R.M.: Feature selection for computeraided polyp detection using genetic algorithms. In: Clough, A.V., Amini, A.A. (eds.) Medical Imaging 2003: Physiology and Function: Methods, Systems, and Applications, Proceedings of the SPIE, vol. 5031, pp. 102–110 (2003)

    Google Scholar 

  17. Pang, S., Kasabov, N.: Inductive vs. transductive inference, global vs. local models: SVM, TSVM, and SVMT for gene expression classification problems. In: International Joint Conference on Neural Networks (IJCNN), vol. 2, pp. 1197–1202. IEEE Press, Los Alamitos (2004)

    Google Scholar 

  18. Runarsson, T.P., Sigurdsson, S.: Asynchronous parallel evolutionary model selection for support vector machines. Neural Information Processing – Letters and Reviews 3, 59–68 (2004)

    Google Scholar 

  19. Shi, S.Y.M., Suganthan, P.N., Deb, K.: Multi-class protein fold recognition using multiobjective evolutionary algorithms. In: IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp. 61–66. IEEE Press, Los Alamitos (2004)

    Google Scholar 

  20. Beyer, H.G., Schwefel, H.P.: Evolution strategies: A comprehensive introduction. Natural Computing 1, 3–52 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hansen, N., Kern, S.: Evaluating the CMA evolution strategy on multimodal test functions. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 282–291. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Gualerzi, C.O., Pon, C.L.: Initiation of mRNA translation in procaryotes. Biochemistry 29, 5881–5889 (1990)

    Article  Google Scholar 

  23. Zien, A., et al.: Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 16, 799–807 (2000)

    Article  Google Scholar 

  24. Rudd, K.E.: Ecogene: a genome sequence database for Escherichia coli K-12. Nucleic Acids Research 28, 60–64 (2000)

    Article  Google Scholar 

  25. Blattner, F.R., et al.: The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462 (1997)

    Article  Google Scholar 

  26. Kozak, M.: Initiation of translation in prokaryotes and eukaryotes. Gene 234, 187–208 (1999)

    Article  Google Scholar 

  27. Shine, J., Dalgarno, L.: The 3’-terminal sequence of Escherichia coli 16S ribosomal RNA: Complementarity to nonsense triplets and ribosome binding sites. PNAS 71, 1342–1346 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mersch, B., Glasmachers, T., Meinicke, P., Igel, C. (2006). Evolutionary Optimization of Sequence Kernels for Detection of Bacterial Gene Starts. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840930_86

Download citation

  • DOI: https://doi.org/10.1007/11840930_86

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38871-5

  • Online ISBN: 978-3-540-38873-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics