Abstract
In this paper a new relevance feedback (RF) methodology for content based image retrieval (CBIR) is presented. This methodology is based on Gaussian Mixture (GM) models for images. According to this methodology, the GM model of the query is updated in a probabilistic manner based on the GM models of the relevant images, whose relevance degree (positive or negative) is provided by the user. This methodology uses a recently proposed distance metric between probability density functions (pdfs) that can be computed in closed form for GM models. The proposed RF methodology takes advantage of the structure of this metric and proposes a method to update it very efficiently based on the GM models of the relevant and irrelevant images characterized by the user. We show with experiments the merits of the proposed methodology.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ishikawa, Y., Subramanya, R., Faloutsos, C.: MindReader: Querying databases through multiple examples. Presented at the 24th VLDB Conf. 1998 (1998)
Cox, I.J., Miller, M.L., Minka, T.P., Papathomas, T.V., Yianilos, P.N.: The Bayesian image retrieval system, PicHunter: Theory, implementation, and psychophysical experiments. IEEE Trans. Image Process. 9(1), 20–37 (2000)
Rui, Y., Huang, T.S., Ortega, M., Mehrotra, S.: Relevance feedback:A power tool for interactive content-based image retrieval. IEEE Trans. Circuits Syst. Video Technol. 8(5), 644–655 (1998)
Carson, C., Belongie, S., Greenspan, H., Malik, J.: Blobworld: Image segmentation using expectation-maximization and its application to image querying. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 1026–1038 (2002)
Chen, Y., Wang, J.Z.: A region-based fuzzy feature matching approach to contentbased image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1252–1267 (2002)
Guo, G.D., Jain, A.K., Ma, W.Y., Zhang, H.J.: Learning similarity measure for natural image retrieval with relevance feedback. IEEE Trans. Neural Netw. 13(4), 811–820 (2002)
Aggarwal, G., Ashwin, T.V., Ghosal, S.: An image retrieval system with automatic query modification. IEEE Trans. Multimedia 4, 201–214 (2002)
Jing, F., Li, M., Zhang, H.J., Zhang, B.: An efficient and effective region-based image retrieval framework. IEEE Trans. Image Process. 13(5), 699–709 (2004)
Manjunath, B.S., Ohm, J.R., Vasudevan, V.V., Yamada, A.: Color and texture descriptors. IEEE Trans. Circuits Syst. Video Technol. 11(6), 703–715 (2001)
Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized Gaussian density and Kullback- Leibler distance. IEEE Trans. Image Process. 11(2), 146–158 (2002)
Rui, Y., Huang, T.S., Chang, S.F.: Image retrieval: Current techniques, promising directions, and open issues. J. Vis. Commun. Image Represen. 10, 39–62 (1999)
Su, Z., Zhang, H., Li, S., Ma, S.: Relevance feedback in content-based image retrieval: Bayesian framework, feature subspaces, and progressive learning. IEEE Trans. Image Process. 12(8), 924–937 (2003)
He, X., King, O., Ma, W.Y., Li, M., Zhang, H.J.: Learning a semantic space from user’s relevance feedback for image retrieval. IEEE Trans. Circuits Syst. Video Technol. 13(1), 39–48 (2003)
Greenspan a, H., Dvir a, G., Rubnerb, Y.: Context-dependent segmentation and matching in image databases. Computer Vision and Image Understanding 93, 86–109 (2004)
El. Naqa, Y., Naqa, E., Yang, Y., Galatsanos, N., Wernick, M.: A Similarity Learning Approach to Content Based Image Retrieval: Application to Digital Mammography. IEEE Transactions on Medical Imaging 23(10), 1233–1244 (2004)
Hsu, C.T., Li, C.Y.: Relevance Feedback Using Generalized Bayesian Framework With Region-Based Optimization Learning. IEEE Trans. on Image Proc. 14(10), 1617–1631 (2005)
Qian, F., Li, M., Zhang, L., Zhang, H.J., Zhang, B.: Gaussian mixture model for relevance feedback in image retrieval. Presented at the IEEE ICME (August 2002)
Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford Univ. Press Inc., New York (1995)
McLachlan, G.M., Peel, D.: Finite Mixture Models. John Wiley & Sons, Inc., New York (2001)
Bimbo, A.D.: Visual Information Retrieval. Morgan Kaufmann, San Mateo (1999)
Sfikas, G., Constantinopoulos, C., Likas, A., Galatsanos, N.P.: An Analytic Distance Metric With Application In Image Retrieval For Gaussian Mixture Models. In: International Conference Artificial Neural Networks (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marakakis, A., Galatsanos, N., Likas, A., Stafylopatis, A. (2006). A Relevance Feedback Approach for Content Based Image Retrieval Using Gaussian Mixture Models. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840930_9
Download citation
DOI: https://doi.org/10.1007/11840930_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38871-5
Online ISBN: 978-3-540-38873-9
eBook Packages: Computer ScienceComputer Science (R0)