Skip to main content

Reliable and Efficient Geometric Computing

  • Conference paper
Algorithms – ESA 2006 (ESA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4168))

Included in the following conference series:

  • 3175 Accesses

Abstract

Computing with geometric objects (points, curves, and surfaces) is central for many engineering disciplines and lies at the heart of computer aided design systems. Implementing geometric algorithms is notoriously difficult and most actual implementations are incomplete: they are known to crash or deliver the wrong result on some instances.

In the introductory part of the talk, we illustrate the pitfalls of geometric computing [5] and explain for one algorithm in detail where the problem lies and what goes wrong.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. CGAL (Computational Geometry Algorithms Library), http://www.cgal.org

  2. EXACUS (EXAct computation with CUrves and Surfaces) (2003), www.mpi-sb.mpg.de/projects/EXACUS

  3. Fortune, S., van Wyk, C.: Efficient exact integer arithmetic for computational geometry. In: 7th ACM Conference on Computational Geometry, pp. 163–172 (1993)

    Google Scholar 

  4. Halperin, D., Shelton, C.: A perturbation scheme for spherical arrangements with application to molecular modeling. CGTA: Computational Geometry: Theory and Applications, 10 (1998)

    Google Scholar 

  5. Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap, C.: Classroom examples of robustness problems in geometric computations. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 702–713. Springer, Heidelberg (2004), www.mpi-sb.mpg.de/~mehlhorn/ftp/ClassRoomExample.ps

    Chapter  Google Scholar 

  6. LEDA (Library of Efficient Data Types and Algorithms), http://www.mpi-sb.mpg.de/LEDA/leda.html

  7. Mehlhorn, K., Näher, S.: The LEDA Platform for Combinatorial and Geometric Computing, p. 1018. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  8. Mehlhorn, K., Osbild, R., Sagraloff, M.: Reliable and Efficient Computational Geometry via Controlled Perturbation. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052. Springer, Heidelberg (2006)

    Google Scholar 

  9. Yap, C.: Towards exact geometric computation. CGTA: Computational Geometry: Theory and Applications, 7 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mehlhorn, K. (2006). Reliable and Efficient Geometric Computing. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_2

Download citation

  • DOI: https://doi.org/10.1007/11841036_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38875-3

  • Online ISBN: 978-3-540-38876-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics