Abstract
Computing with geometric objects (points, curves, and surfaces) is central for many engineering disciplines and lies at the heart of computer aided design systems. Implementing geometric algorithms is notoriously difficult and most actual implementations are incomplete: they are known to crash or deliver the wrong result on some instances.
In the introductory part of the talk, we illustrate the pitfalls of geometric computing [5] and explain for one algorithm in detail where the problem lies and what goes wrong.
Similar content being viewed by others
References
CGAL (Computational Geometry Algorithms Library), http://www.cgal.org
EXACUS (EXAct computation with CUrves and Surfaces) (2003), www.mpi-sb.mpg.de/projects/EXACUS
Fortune, S., van Wyk, C.: Efficient exact integer arithmetic for computational geometry. In: 7th ACM Conference on Computational Geometry, pp. 163–172 (1993)
Halperin, D., Shelton, C.: A perturbation scheme for spherical arrangements with application to molecular modeling. CGTA: Computational Geometry: Theory and Applications, 10 (1998)
Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap, C.: Classroom examples of robustness problems in geometric computations. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 702–713. Springer, Heidelberg (2004), www.mpi-sb.mpg.de/~mehlhorn/ftp/ClassRoomExample.ps
LEDA (Library of Efficient Data Types and Algorithms), http://www.mpi-sb.mpg.de/LEDA/leda.html
Mehlhorn, K., Näher, S.: The LEDA Platform for Combinatorial and Geometric Computing, p. 1018. Cambridge University Press, Cambridge (1999)
Mehlhorn, K., Osbild, R., Sagraloff, M.: Reliable and Efficient Computational Geometry via Controlled Perturbation. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052. Springer, Heidelberg (2006)
Yap, C.: Towards exact geometric computation. CGTA: Computational Geometry: Theory and Applications, 7 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mehlhorn, K. (2006). Reliable and Efficient Geometric Computing. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_2
Download citation
DOI: https://doi.org/10.1007/11841036_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38875-3
Online ISBN: 978-3-540-38876-0
eBook Packages: Computer ScienceComputer Science (R0)