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Abstract. We revisit the problem of indexing a string S[1..n] to support
searching all substrings in S that match a given pattern P [1..m] with at
most k errors. Previous solutions either require an index of size exponen-
tial in k or need Ω(mk) time for searching. Motivated by the indexing
of DNA sequences, we investigate space efficient indexes that occupy
only O(n) space. For k = 1, we give an index to support matching in
O(m + occ + log n log log n) time. The previously best solution achieving
this time complexity requires an index of size O(n log n). This new index
can be used to improve existing indexes for k ≥ 2 errors. Among others,
it can support matching with k = 2 errors in O(m log n log log n + occ)
time.

1 Introduction

Given a string S[1..n] over a constant-size alphabet Σ and an integer k ≥ 0,
we want to build an index for S, such that for any subsequent query pattern
P [1..m], we can report efficiently all substrings in S that match P with at most
k errors. The primary concern is how to achieve efficient pattern matching given
limited space for indexing. We consider two kinds of errors: In the Hamming
distance case, an error is a character substitution; in the edit distance case, an
error can be a character substitution, insertion or deletion.

For exact string matching (i.e., k = 0), simple and efficient solutions have
been known since the 1970s. Suffix trees [14,20] use O(n) space3 and achieve the
optimal matching time, i.e. O(m + occ), where occ is the number occurrences of
P in S. Suffix arrays [13], also using O(n) space but with a smaller constant, give
an O(m+occ+log n) matching time. Recently, two compressed solutions, namely,
CSA [8] and FM-index [7], have been proposed; they require only O(n)-bit space
and support matching in O(m + occ logε n) time, for any constant ε > 0.

Approximate matching is a more challenging problem even if only one error
is allowed. The simplest solution is to search the suffix tree of S for every 1-error
? This research was supported by Hong Kong RGC Grant 7139/04E.
3 Unless otherwise stated, the space complexity is measured in terms of the number

of words, where a word can store O(log n) bits.



Space k = 1 k = 2

O(n log2 n) words O(m log n log log n + occ) [1] O(m + log2 n log log n + occ) [5]

O(n log n) words O(m log log n + occ) [2] O(m + log2 n log log n + occ) †
O(m + log n log log n + occ) [5]

O(n) words O(min{n, m2}+ occ) [4] O(min{n, m3} + occ) [4]
O(m log n + occ) [10] O(m2 log n + occ) [10]
O(m log log n + occ) [11] O(m2 log log n + occ) [11]
O(m + log3 n log log n + occ) [6] O(m + log6 n log log n + occ) [6]
O(m + log n log log n + occ) † O(m log n log log n + occ) †

Table 1. A summary of results. Results given in this paper are marked with †.

modification of the query pattern, this requires O(m2 + occ) time4 [4]. The
first non-trivial improvement was due to Amir et al. [1], who showed that the
matching time can be improved to O(m log n log log n + occ) using an index
occupying O(n log2 n) space. Later Buchshaum et al. [2] further improved the
matching time to O(m log log n + occ), as well as reducing the index space to
O(n log n). Huynh et al. [10] and Lam et al. [11] further compressed the index to
O(n) space, while achieving the time complexity of the indexes reported in [1]
and [2], respectively. It has been an open problem whether a time complexity
linear in m and occ can be achieved. Recently, Cole et al. [5] resolved in the
affirmative with an O(n log n)-space index that supports one-error matching in
O(m + log n log log n + occ) time. And more recently, Chan et al. [6] found that
Cole et al.’s index admits a time-space tradeoff, i.e., the space can be reduced to
O(n) space, yet the time complexity increases to O(m+log3 n log log n+occ). In
this paper, we give new techniques for compressing Cole et al.’s index to O(n)
space, while retaining the same time complexity.

To cater for k = O(1) errors, one can perform a brute-force search on a one-
error index (i.e., repeatedly modify the pattern at different k − 1 positions and
search for one-error matches); the matching becomes very slow, involving a factor
of mk in the time complexity. A breakthrough result was given by Cole et al. [5],
who devised a recursive solution to build an index that occupies O(n logk n)
space and supports k-error matching in O(m + logk n log log n + occ) time for
Hamming distance. The term occ is replaced with occ · 3k for edit distance. Our
new 1-error index is essentially a compressed version of the Cole et al.’s 1-error
index and can replace it as the base case in their recursive solution. This gives an
O(n logk−1 n)-space index for k-error matching with the same time complexity.

For indexing long sequences like DNA (which contains a few million to a few
billion characters), it is not desirable to have an index whose space complexity
grows exponentially as k increases. Like the case of 1-error, the k-error index
of Cole et al.’s also admits a time-space tradeoff; in particular, Chan et al. [6]
showed that the tree cross product technique by Buchshaum et al. [2] can be

4 Unless otherwise stated, all matching time mentioned applies to both Hamming and
edit distance.



used to trade time for space in the k-error index by Cole et al., the space can
be reduced to O(n) while the time for k-error matching increases to O(m +
logk(k+1) n log log n + occ). Note that this result is of theoretical interest only
as the time complexity is far from practical. For k = 2, the time complexity
already involves a term log6 n log log n, which is likely to be much bigger than
m in most applications. In this paper, we devise a more practical solution for 2-
error matching. Specifically, we show that our new O(n)-space index for 1-error
matching can readily support 2-error matching in O(m log n log log n+occ) time.
Furthermore, this index can also handle k ≥ 3 errors using a brute force manner,
and the matching time is O(mk−1 log n log log n + occ).

In this paper, we assume the alphabet size |Σ| is a constant and hence
does not affect the asymptotic analysis. If |Σ| is huge or unbounded, we re-
mark that our data structures takes O(n) space (i.e., does not involve |Σ|); the
1-error matching time is O(m + |Σ| log n log log n + occ), the 2-error matching
time is O(|Σ|2m log n log log n + occ), and the k-error matching time, k > 2, is
O(|Σ|kmk−1 log n log log n + occ).

On the technical side, our result is based on a new technique to replace the
tree-like data structure of Cole et al. [5] with simple arrays of integers, which
are basically some kind of lexicographical information about a suffix tree. We
show how approximate string matching can be done by simple range queries
over these arrays, instead of the more complicated tree traversals as in [5]. Fur-
thermore, we show how to compress these arrays by storing the lexicographical
information imprecisely. This simple approximation can save space and can be
verified efficiently. Using the known results on concise representation of increas-
ing sequences and range searching, we reduce the space requirement of Cole et
al. by a factor of O(log n), without increasing the matching time.

We extend our data structure for 1-error matching to support a lazy prepro-
cessing of the input pattern P , which takes O(m) time. Then, for any P ′ formed
by modifying P at one position, we can find the 1-error matches of P ′ in S in
O(log n log log n + occ′) time, where occ′ is the number of 1-error matches for
P ′. There are O(m) possible P ′, so all the 2-error matches of P can be found in
O(m log n log log n + occ) time.

Due to the page limit, we omitted the details about our results on k-error
matching, which will be given in the full paper. We remark that our paper
concerns only worst-case performance. The literature also contains several inter-
esting results on average-case performance, see, e.g., [3, 12,17].

2 Preliminaries

Let S[1..n] be a string over a constant-size alphabet Σ. The suffix tree T of S is a
compact trie comprising all suffixes of S. Throughout this paper, we assume that
the suffixes are ordered from left to right in increasing lexicographical order. The
suffix array SA[1..n] is an array of integers such that SA[i] = j if S[j..n] is the
lexicographically i-th suffix of S. Note that the inverse suffix array SA−1[1..n]
satisfies that SA−1[j] gives the lexicographical order of the suffix S[j..n]. We



always store T , SA[1..n] and SA−1[1..n], which take O(n) words, or equivalently,
O(n log n) bits.

2.1 Centroid path decomposition

For a suffix tree T , the centroid path decomposition [5] of T is defined as follows.
For every internal node u, let v be the child of u with the most number of leaves
(ties broken arbitrarily). The edge uv is called a core edge. Edges other than
core edges are called side edges. A centroid path C is a maximal path connecting
consecutive core edges. The root of C, denoted r(C), is the top-most node on C.
The level of C is the number of side edges on the path from the root of T to
r(C). We denote ∆(T ) the set of all centroid paths in T .

Denote Tu the subtree of T rooted at a node u and |Tu| be the number of
leaves in Tu. Let TC be Tr(C). A leaf (i.e., a suffix) x of T belongs to a centroid
path C if x is in TC . A node u hangs from C if its parent edge is a side edge
connecting to a node on C, and Tu is called a side tree of C. For any node u
hanging from C, we note that |Tu| ≤ |TC |/2. We highlight some properties of the
decomposition.

Fact 1 (i) For any leaf x in T , the path from root of T to x has at most log n side
edges, and x belongs to at most log n centroid paths. (ii) ΣC∈∆(T )|TC | ≤ n log n.
(iii) For any two centroid paths C1 and C2 of the same level, TC1 and TC2 are
disjoint, i.e., they do not have common leaves.

2.2 The side-tree rank of a leaf

Consider a centroid path C. The leaves in TC are partitioned among the side
trees, and our compressed index needs the association between the leaves and
the side trees. To save space, we rank the side trees hanging from C in descending
order of their size (i.e., the number of leaves), and we store, for each leaf x, the
rank of the side tree containing x, which is denoted st-rankC(x). To store such
side-tree ranks for all controid paths, we need

∑
C∈∆(T )

∑
x∈TC

dlog st-rankC(x)e
bits, which is naively at most n log2 n bits (because ΣC∈∆(T )|TC | ≤ n log n and
st-rankC(x) ≤ n). Our compressed index actually takes advantage of a better
upper bound.

Lemma 1. (i) Let x be a leaf in T , belonging to centroid paths C1, C2, · · · , Cα.
Then,

∑
1≤i≤α log st-rankCi

(x) ≤ log n. (ii)
∑

C∈∆(T )

∑
x∈TC

dlog st-rankC(x)e ≤
2n log n.

Proof. Let x be any leaf in T . (i) We assume that the α ≥ 1 centroid paths
to which x belongs are labeled in such a way that r(Ci+1) hangs from Ci, for
i = 1, . . . , α− 1. Let ri = st-rankCi

(x). We note that |TCi
| ≥ |TCi+1 |× ri, because

the ri-th largest side tree has at most 1
ri

of all leaves belonging to Ci. Thus, we

have
∑α

i=1 log ri ≤
∑α−1

i=1 log( |TCi
|

|TCi+1 |
)+log rα ≤ log |TC1 |

|TCα |
+log |TCα | = log |TC1 | ≤

log n. (ii) It follows directly from (i). �



2.3 The y-fast trie

Let A[1..`] be a sorted array of integers. Given any integer j, the predecessor
query reports the smallest i such that j < A[i]. Willard [21] gave the y-fast trie
data structure with the following performance.

Lemma 2 ( [21]). Let A[1..`] be a sort array of integers in [1, n], we can
build a y-fast trie for A using O(` log n) bits to support the predecessor query
in O(log log n) time.

2.4 The LCP data structure

Let T be the suffix tree for S[1..n]. Let T ′ be a trie for only a subset of suffixes in
T . A location in T ′ is a node in T ′ or a point on an edge some characters below
a node. Given a pattern P [1..m], an integer i ≤ m and a location u in T ′, the
query LCP(P, i, u) asks for the location at which the suffix P [i..m] diverges from
T ′, when P [i..m] is aligned to T ′ starting from u. We are allowed to preprocess
P in O(m) time, and the concern is to efficiently answer subsequent LCP queries
for different suffix P [i..m] and location u.

Let ` be the number of leaves in T ′. Cole et al. [5] proposed an O(` log2 n)-bit
LCP data structure to answer each subsequent LCP query in O(log log n) time.
In this paper, we use a simple observation to reduce the space requirement to
O(` log n) bits.

We first outline the LCP data structure in [5]. Essentially, [5] performs a
centroid path decomposition on T ′. For any C ∈ ∆(T ′), let T ′

C be the subtree
of T ′ rooted at r(C) and let `C be the number of leaves in T ′

C . The path from
r(C) to a leaf in T ′ is a suffix of S. In [5], an array AC [1..`C ] is used to store
the lexicographical order of each such suffix, among all suffixes of S. Note that
AC [1..`C ] is strictly increasing. A y-fast trie [21] of size O(`C log n) bits is built
to answer in O(log log n) time the predecessor query. These A arrays and y-
fast tries over all centroid paths in T ′ take totally O(` log2 n)-bit space. The
remaining part of the LCP data structure takes only O(` log n)-bit space. We
use the following observation to reduce the space requirement.

Lemma 3. For any centroid path C in T ′, let hC be the total length of edge label
from root of T ′ to r(C). (i) For i = 1, . . . , `C, AC [i] can be computed in O(1)
time using hC and the inverse suffix array of S. (ii) The predecessor query can
be supported in O(log log n) time using an O(`C)-bit data structure.

Proof. (i) Consider the i-th leaf in T ′
C and let S[j..n] be its leaf label, i.e., S[j..n]

is the suffix corresponding to the path from root of T ′ to this leaf. By definition,
AC [i] is the lexicographical order of S[j + hC ..n], so AC [i] = SA−1[j + hC ].

(ii) Instead of building a y-fast trie on the complete AC array, we only build
a y-fast trie for AC [log n], AC [2 log n], . . . using O(`C) bits space. The predecessor
query can be done by first querying y-fast trie, then performing a binary search
in AC within an interval of length log n. It takes O(log log n) time. �



Thus, for each centroid path C, we store an integer hC and an O(`C)-bit
predecessor data structure. It takes totally O(` log n) bits over all centroid paths
in T ′. Together with the remaining part of the LCP data structure of [5], we
have the following lemma.

Lemma 4. Let T ′ be a compact trie comprising ` suffixes of S[1..n]. We can
build an O(` log n)-bit LCP data structure for T ′. Given any pattern P [1..m], we
can preprocess P in O(m) time. Each subsequent LCP query can be answered
in O(log log n) time.

3 An O(n log n)-bit index for 1-error matching

This section explains how to compress the data structure of Cole et al. [5] in
order to obtain an O(n log n)-bit index for S[1..n], such that for any pattern
P [1..m], it finds the 1-error matches of P in O(m + occ + log n log log n) time.
We consider Hamming distance first. Extension to edit distance is given at the
end of the section.

Let us first consider the suffix tree T of S. We perform a centroid path
decomposition on T and let ∆(T ) be the set of all centroid paths. For any
centroid path C, we define a set of modified suffixes as follows. Let s be a suffix
in T passing through the root of C, and diverging from C at a node u on C. We
create a modified suffix s′ by modifying s at the first character after u, replacing
it with the first character on the core edge out of u. We say that s generates s′

according to C. We assume the suffix corresponding to C itself is also a modified
suffix generated according to C.

To find the 1-error matches of P in S, the core of our algorithm is solving
the following prefix matching problem.

Definition 1 (Prefix matching query for modified suffixes). Let T be
the suffix tree of S and P be a pattern. For any centroid path C of T , let φC
be the set of modified suffixes generated according to C with P as a prefix. The
prefix matching query, denoted prefix(C), reports the set ΦC of suffixes in T that
generate the modified suffixes in φC .

Lemma 5. Let T be the suffix tree of S[1..n]. We can build an O(n log n)-bit
index for T . For any pattern P [1..m], we can preprocess P in O(m) time; then
prefix(C), for any centroid path C in T , can be answered in O(log log n+|ΦC |+eC)
time, where eC is non-negative and the sum of eC over all centroid paths in T is
at most 2 log n.

The following subsections are devoted to the proof of Lemma 5. Then by
using the framework of Cole et al. [5], we can exploit our indexes for the prefix
matching queries and LCP queries to obtain an O(n log n)-bit index for the 1-
error matching problem, and Theorem 1 follows. We leave the details to the full
paper.

Theorem 1. We can build an O(n log n)-bit index for S[1..n] that finds the 1-
error matches of any P [1..m] in O(m + occ + log n log log n) time, where occ is
the number of matches found.



3.1 The prefix matching query for modified suffixes

Cole et al. [5] used the error-tree data structure to support the prefix matching
query in O(m) preprocessing time and O(log log n + |ΦC |) query time. Their
solution takes O(n log2 n)-bits and requires sophisticated tree operations. In this
paper, we uses interesting techniques to replace their tree-like data structure
with simple arrays of integers.

A simple O(n log2 n)-bit solution. Let T be the suffix tree of S. Let U be
the set of all the O(n log n) modified suffixes generated according to all the cen-
troid paths. For each centroid path C, we simply store two arrays of integers.
Let s′1, s

′
2, . . . , s

′
` be the modified suffixes generated according to C, in increasing

lexicographical order. We store (1) lex-orderC , where lex-orderC [i] is the lexico-
graphical order of s′i among all modified suffixes in U . (2) labelC , where labelC [i]
= j if s′i is generated by the suffix S[j..n].

In addition, we store a compact trie M for U . Given any pattern P , we
preprocess P by aligning P with M starting from the root. It determines the
range [d, e] such that all modified suffixes with lexicographical order in [d, e]
(w.r.t. U) have P as a prefix. Given any centroid path C of T , the prefix match-
ing query is done by a range search query on lex-orderC . For each i such that
d ≤ lex-orderC [i] ≤ e, we report labelC [i]. The range search on lex-orderC takes
O(log log n) time by storing a y-fast trie [21] on lex-orderC . Thus, finding the ΦC
takes O(log log n + |ΦC |) time. The total space requirement is O(n log2 n) bits.

An O(n log n)-bit solution. We exploit sophisticated techniques to reduce the
space requirement of the above solution to O(n log n) bits.

1. Sampling. Instead of M , we store a compact trie containing only one in every
log n leaves of M . With this approximation, answering the prefix matching
query on a centroid path C requires extra verification on the suffixes before
reporting it as ΦC . Let eC be the number of suffixes that require verification.
We show that the sum of eC is at most 2 log n over all centroid paths.

2. Constant time verification. Given the pattern P , a centroid path C and a
suffix s = S[j..n], we need to verify whether s generates a modified suffix s′

according to C with P as a prefix. We show how to perform the verification
in O(1) time using the suffix tree, suffix array and the LCP data structure.

3. Concise representation. The lex-orderC and labelC arrays take totally O(n log2 n)
bits if stored directly. We replace their entries with integers of smaller values,
by exploiting the properties of the centroid path decomposition. Then, we
use variable size encoding to represent the arrays in O(n log n) bits.

Precisely, our O(n log n)-bit solution stores a compact trie N comprising
O(n) modified suffixes in U , namely, the lexicographically (log n)-th, (2 log n)-
th, (3 log n)-th, ... modified suffixes. For a centroid path C, let s′1, s

′
2, . . . , s

′
` be

the modified suffixes generated for C. We store two length-` arrays for C.

– lex-orderC [1..`]: lex-orderC [i] is the lexicographical order of s′i among all the
O(n) modified suffixes in N .



– labelC [1..`]: Define labelC [i] = j if s′i is generated by S[j..n].

A naive way to store the rank and label arrays still takes O(n log2 n) bits.
In Section 3.3, we give non-trivial techniques to compress them into O(n log n)
bits. We first proceed to show how to use these two arrays to find ΦC efficiently.

3.2 Answering a prefix matching query

Given a pattern P , we show how to preprocess P in O(m) time such that for
any centroid path C, the prefix matching query prefix(C) can be answered in
O(log log n + |ΦC | + eC) time, and the sum of eC over all centroid paths C is at
most 2 log n.

Error-bounded candidate generation. We align P with N starting from the
root in O(m) time to find the range [d, e] corresponding to leaves in N with P
as a prefix. Then, for any centroid path C, we can find ΦC as follows.

1. Find the maximal range [p..q] such that d−1 ≤ lex-orderC [p] ≤ lex-orderC [q] ≤
e + 1 by a range search query on the lex-orderC array.

2. For each i in [p..q], let j = labelC [i]. If lex-orderC [i] is not d − 1 or e + 1,
report S[j..n] in ΦC ; otherwise, call S[j..n] a candidate and verify whether
S[j..n] is in ΦC .

We want the lex-orderC array to support the operation range search(d, e):
given integers d and e, d ≤ e, return p, q such that lex-orderC [p..q] is the largest
interval satisfying d − 1 ≤ lex-orderC [p] ≤ lex-orderC [q] ≤ e + 1. We can build a
y-fast trie [21] on one per log n entries in lex-orderC . Then range search can be
done in O(log log n) time by a query to the y-fast trie and then a binary search
in an interval of length log n. It uses O(n log n) bits over all centroid paths.

Lemma 6. For any centroid path C, let eC be the number of candidates generated
for verification. The sum of eC over all centroid paths is at most 2 log n.

Proof. For any integer i, at most log n entries over all lex-order arrays equal i,
and we verify a suffix only if its lex-order value is d− 1 or e + 1. �

Constant time verification. We need to verify whether a candidate is in ΦC .

Lemma 7. We can preprocess P in O(m) time. Then, for any centroid path C
and candidate S[j..n], we can verify in O(1) time whether S[j..n] is in ΦC, i.e.,
S[j..n] generates a modified suffix according to C with P as a prefix.

Proof. We preprocess P with the suffix tree T , which takes O(m) time: For each
suffix P [r..m], we store the range [dr, er] such that all leaves with lexicographical
order (w.r.t. T ) in [dr, er] have P [r..m] as a prefix.

To verify a suffix S[j..n], let v be the node in T that S[j..n] diverges from the
path of P . v can be found in constant time using an O(n log n)-bit LCA data
structure [9] for T . Let P [1..r] (or equivalently, S[j..j + r− 1]) be the path label
from the root to v. (For each node v in T , we store the path length from the



root to v so that P [1..r] is known in O(1) time.) S[j..n] is in ΦC if (1) v is on C,
(2) the first character on the core edge out of v is P [r+1], and (3) S[j +r+1..n]
has a prefix matching P [r+2..m]. The last condition can be checked in constant
time by comparing SA−1[j + r + 1] with the range [dr+2, er+2] obtained during
the preprocessing. �

In conclusion, Lemmas 6 and 7 show that we can build O(n log n)-bit data
structures on top of lex-orderC and labelC . Then, we can preprocess P in O(m)
time; for any centroid path C, we can answer the prefix matching query in
O(log log n + |ΦC | + eC) time, where eC is the number of verification performed
and the sum of eC over all centroid path is at most 2 log n.

3.3 Compressed representation of the lexicographical information

We show how to store the lex-order and label arrays in O(n log n)-bit space.

Compressing the lex-order arrays. For any centroid path C, entries in lex-orderC
are monotonic increasing, so efficient compression is possible by Lemma 8. Proof
of Lemma 8 will be given in the full paper.

Lemma 8. Let c1 ≤ c2 ≤ . . . ≤ c` be a sequence of positive integers. We can
store the sequence in O(log c1 + ` · max{log( c`−c1

` ), 1}) bits and support O(1)
retrieval time for each ci.

Lemma 9. We can store the lex-order arrays of all centroid paths in O(n log n)-
bit space and support O(1) retrieval time to each entry.

Proof. For any centroid path C, let `C be the number of modified suffixes gen-
erated according to C. Let hC = lex-orderC [`C ] − lex-orderC [1]. Consider all
C ∈ ∆(T ). By Lemma 8, the total space required for the lex-orderC arrays is∑

O(log lex-orderC [1]+`C ·max{log(hC
`C

), 1}) ≤
∑

O(log lex-orderC [1]+`C ·log(2+
hC
`C

)) = O(n log n)+O(log
∏

(2+ hC
`C

)`C ) bits. By the AM-GM inequality on
∑

`C

numbers, we have
∏ (

2+ hC
`C

)`C ≤
(

1∑
`C

∑
`C(2 + hC

`C
)
)∑

`C =
( 2

∑
`C+

∑
hC∑

`C

)∑
`C .

Note that x1/x ≤ 2 for x ≥ 2. Let x = 2
∑

`C+
∑

hC∑
`C

, we have
( 2

∑
`C+

∑
hC∑

`C

)∑
`C =

x
1
x (2

∑
`C+

∑
hC) ≤ 2(2

∑
`C+

∑
hC). Thus, log

∏
(2 + hC

`C
)`C ≤ 2

∑
`C +

∑
hC . Let

Lj be the set of all centroid paths with level j, j ≤ log n. For any two centroid
paths in Lj , their lex-order arrays are disjoint, so

∑
C∈Lj

hC ≤ n. There are at
most log n levels, so

∑
C∈∆(T ) hC ≤ n log n. �

Compressing the label arrays. Unlike lex-order, the label array is not an in-
creasing sequence. To compress label, we simulate it by other “simpler” arrays.
For a centroid path C, let s′1, s

′
2, . . . , s

′
` be the modified suffixes generated ac-

cording to C, in increasing lexicographical order. Assume that t side trees hang
from C. We store the following information.

– st-rankC [1..`]: Suppose s′i is generated by the suffix s in T . Then st-rankC [i]
stores the side-tree-rank of s, i.e., the rank of the side tree containing s.



– tree pointerC [1..t]: tree pointerC [j] points to the j-th largest side tree of C in
T , ties are broken arbitrarily.

– modified rankC,v[1..|Tv|], for each side-tree Tv of C in T : modified rankC,v[j] =
i if the j-th suffix in Tv generates s′i.

To find labelC [i], note that tree pointerC [st-rankC [i]] returns the side tree Tv

hanging from C which contains the suffix that generates s′i. We perform a rank(i)
query on unmodifed rankC,v, where rank(i) returns j if modified rankC,v[j] = i.
Thus, labelC [i] is the j-th suffix in Tv. Let wv be the number suffixes on the left
of v in T . Then labelC [i] = SA[wv + j].

By Lemma 1, the st-rankC arrays for all centroid paths C can be represented in
O(n log n) bits using variable size encoding. We can build a select data structure
[15] on the arrays, which uses O(n log n) bit, to support O(1) time access to
each entry. The tree pointer arrays contain only n pointers in total and take
O(n log n) bits over all centroid paths.

Lemma 10. We can store modified rankC,v array to support the rank(i) query
in O(1) time: given any integer i, return j if modified rankC,v[j] = i; return null
otherwise. Total space required over all C ∈ ∆(T ) and all side trees Tv hanging
from C is O(n log n) bits.

Proof. Consider any centroid path C and a side tree Tv hanging from C. The
sequence modified rankC,v is strictly increasing and ranges from 1 to |TC |, hence
it can be stored in O(|Tv| log |TC|

|Tv| ) bits while supporting the rank query [18]. Let
f(TC) denote the total space required to store the modified rank arrays for all
centroid paths with root in TC , including C. Let Tv1 , Tv2 , . . . , Tvt be side trees
hanging from C. Note that f(TC) ≤

∑t
i=1

(
O(|Tvi

| log |TC|
|Tvi

| ) + f(Tvi)
)
. Resolv-

ing this recurrence, we have f(TC) = O(|TC | log |TC |) for any C. Therefore, all
modified rank arrays in T can be stored in O(n log n) bits. �

In conclusion, Lemma 9 and 10 show that the lex-order and label arrays can
be represented in O(n log n) bits and support O(1) time retrieval. Together with
the matching algorithm of Section 3.2, Lemma 5 follows.

Extending to edit distance. We handle each type of edit operations sepa-
rately. Substitution is handled by the above data structure. To find substrings
of S that matches P with one insertion (to the substrings), we generate another
type of modified suffixes, which we called the insertion suffixes. Precisely, let C
be a centroid path in the suffix tree T . Let s be a suffix in T passing through the
root of C, and diverging from C at a node u on C. We create an insertion suffix
s′ by inserting a character c to s after u, where c is the first character on the
core edge out of u. We say that s generates an insertion suffix s′ according to C.
Given a pattern P , finding the 1-error matches can be reduced to a number of
prefix matching queries on the insertion suffixes and LCP queries. By handing
the prefix matching queries using the same techniques as shown, we find all 1-
error matches for insertion in the O(m + occ′ + log n log log n) time, where occ′

is the number of matches found. Handling deletion is identical. The total space
for the data structures is O(n log n) bits.



4 An O(n log n)-bit index for 2-error

Given a pattern P [1..m], we can find its 2-error matches in S as follows: First
modify P at each position P [i], substituting it with a character c 6= P [i]. Denote
the modified pattern as Pi,c[1..m]. Then, find all 1-error matches of Pi,c with the
error in Pi,c[1..i − 1]. By trying all i = 1, . . . ,m and each possible c ∈ Σ, each
2-error match of P is found exactly once.

To support the above operations, we store the O(n log n)-bit index for 1-
error matching, as well as some O(n log n)-bit auxiliary data structures (to be
defined). Then, to find all 2-error matches of a pattern P [1..m], we perform the
followings for every i = 1, . . . ,m and for every c ∈ Σ.

1. Search Pi,c in T to identify the centroid paths and side edges Pi,c overlaps.
2. Search Pi,c in the sampled 1-error tree N to identify an interval [d, e] corre-

sponding to modified suffixes in N with Pi,c as a prefix.
3. Find the 1-error matches of Pi,c where the error is in P [1..i− 1] and is on a

side edge. This is done by performing an LCP query in T for each side edge
Pi,c overlaps.

4. Find the 1-error matches of Pi,c where the error is in P [1..i− 1] and is on a
centroid path. We follow the approach in Section 3.2, generating candidates
and verifying them for correct matches.

By preprocessing P (but not Pi,c) in O(m) time, we can perform Step 1
in O(log log n + w) time, where w ≤ 2 log n is the number of centroid paths
and side edges Pi,c overlaps. We can also build an O(n log n)-bit LCP data
structure for N so that Step 2 takes O(log log n) time. Step 3 can be done in
O(log n log log n + #output) time.

The main challenge is Step 4. Generating candidates involves range search
queries on the rankC arrays, and the candidates generated may include an un-
bounded number of modified suffixes having Pi,c as a prefix but their modified
position is not in Pi,c[1..i−1]. Thus, for each centroid path C, we store a modifiedC
array storing the location of the modified character of each modified suffix gen-
erated according to C. We then use a Bounded Value Range Query (BVRQ) data
structure [16] to ensure generating candidates with the required error positions,
plus at most 2 log n counterfeits. Finally, we verify each candidate in O(1) time.
We can show that the modifiedC arrays and the BVRQ data structures take to-
tally O(n log n) bits and Step 4 takes O(log n log log n + #output) time. So, we
have the following lemma.

Lemma 11. We can build an O(n log n)-bit index for S[1..n]. Given a pattern
P [1..m], we can preprocess P in O(m) time. For any modified pattern Pi,c, we can
find all 1-error matches of Pi,c with the error in Pi,c[1..i−1] in O(log n log log n+
occi,c) time, where occi,c is the number of matches found.

By repeating the search for each Pi,c, i ≤ m and c ∈ Σ, we can find all
2-error matches of P in O(m log n log log n + occ) time, where occ is the number
of 2-error matches.
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