Skip to main content

Traversing the Machining Graph

  • Conference paper
Algorithms – ESA 2006 (ESA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4168))

Included in the following conference series:

  • 2967 Accesses

Abstract

Zigzag pocket machining (or 2D-milling) plays an important role in the manufacturing industry. The objective is to minimize the number of tool retractions in the zigzag machining path for a given pocket (i.e., a planar domain). We give an optimal linear time dynamic programming algorithm for simply connected pockets, and a linear plus O(1)O(h) time optimal algorithm for pockets with h holes. If the dual graph of the zigzag line segment partition of the given pocket is a partial k-tree of bounded degree or a k-outerplanar graph, for a fixed k, we solve the problem optimally in time O(n logn). Finally, we propose a polynomial time algorithm for finding a machining path for a general pocket with h holes using at most OPT+εh retractions, where OPT is the smallest possible number of retractions and ε>0 is any constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkin, E.M., Bender, M.A., Demaine, E.D., Fekete, S.P., Mitchell, J.S.B., Sethia, S.: Optimal Covering Tours with Turn Costs. SIAM Journal on Computing 35(3), 531–566 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arkin, E.M., Fekete, S.P., Mitchell, J.S.B.: Approximation Algorithms for Lawn Mowing and Milling. Computational Geometry: Theory and Applications 17, 25–50 (2000)

    MATH  MathSciNet  Google Scholar 

  3. Arkin, E.M., Held, M., Smith, C.L.: Optimization Problems Related to Zigzag Pocket Machining. Algorithmica 26(2), 197–236 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of Finding Embeddings in a k-tree. SIAM Journal on Algebraic Discrete Methods 8, 277–284 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arnborg, S., Proskurowski, A.: Linear Time Algorithms for NP-hard Problems Restricted for Partial k-trees. Discrete Applied Mathematics 23, 11–24 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Arya, S., Cheng, S.-W., Mount, D.M.: Approximation Algorithm for Multiple-tool Milling. International Journal of Computational Geometry and Applications 11(3), 339–372 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Baker, B.: Approximation Algorithm for NP-complete Problems on Planar Graphs. Journal of the ACM 41(1), 153–180 (1994)

    Article  MATH  Google Scholar 

  8. Bodlaender, H.L.: Some Classes of Graphs with Bounded Tree-width. Bulletin of the EATCS 36, 116–126 (1988)

    MATH  Google Scholar 

  9. Bruckner, L.K.: Geometric Algorithms for 2.5D Roughing Process of Sculptured Surfaces. In: Proc. Joint Anglo-Hungarian Seminar on Computer-Aided Geometric Design, October 1982, Budapest, Hungary (1982)

    Google Scholar 

  10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)

    Google Scholar 

  11. Guyder, M.K.: Automating the Optimization of 2.5 Axis Milling. In: Proc. Computer Applications in Production and Engineering. North-Holland, Amsterdam (1989)

    Google Scholar 

  12. Held, M.: A Geometry-Based Investigation of the Tool Path Generation for Zigzag Pocket Machining. Visual Computers 7(5-6), 296–308 (1991)

    Article  Google Scholar 

  13. Held, M.: On the Computational Geometry of Pocket Machining. LNCS, vol. 500. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  14. Held, M., Arkin, E.M.: Letter to Editor: An Algorithm for Reducing Tool Retractions in Zigzag Pocket Machining. Computer-Aided Design 32(10), 917–919 (2000)

    Article  Google Scholar 

  15. Kim, B.K., Park, J.Y., Lee, H.C., Kim, D.S.: Determination of Cutting Direction for Minimization of Tool Retraction Length in Zigzag Pocket Machining. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2669, pp. 680–689. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Kramer, T.R.: Pocket Milling with Tool Engagement Detection. J. Manufacturing Systems 11(2), 114–123 (1992)

    Article  Google Scholar 

  17. Lichtenstein, D.: Planar Satisfiability and Its Uses. SIAM Journal on Computing 11, 329–343 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Reed, B.: Finding Approximate Separators and Computing Tree-width Quickly. In: Proc. 24th Annual ACM Symp. on Theory of Computing, pp. 221–228 (1992)

    Google Scholar 

  19. Schwerdt, J., Smid, M., Janardan, R.: Computing an optimal hatching direction in layered manufacturing. International Journal of Computer Mathematics 79, 1067–1081 (2002)

    Article  MATH  Google Scholar 

  20. Suh, Y.S., Lee, K.: Neural Network Modeling for Tool Path Planing of the Rough Cut in Complex Pocket Milling. J. Manufacturing Systems 15(5), 273–284 (1990)

    Google Scholar 

  21. Tang, K.: Geometric Optimization Algorithms in Manufacturing. Computer-Aided Design and Applications 2(6), 747–758 (2005)

    Google Scholar 

  22. Tang, K., Chou, S.-Y., Chen, L.-L.: An Algorithm for Reducing Tool Retractions in Zigzag Pocket Machining. Computer-Aided Design 30(2), 123–129 (1998)

    Article  Google Scholar 

  23. Tang, K., Joneja, A.: Traversing the Machining Graph of a Pocket. Computer-Aided Design 35(11), 1023–1040 (2003)

    Article  MATH  Google Scholar 

  24. Yao, Z.-Y., Gupta, S.K.: Cutter Path Generation for 2.5D Milling by Combining Multiple Different Cutter Path Patterns. Int. J. Prod. Res. 42(11), 2141–2161 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, D.Z., Fleischer, R., Li, J., Wang, H., Zhu, H. (2006). Traversing the Machining Graph. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_22

Download citation

  • DOI: https://doi.org/10.1007/11841036_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38875-3

  • Online ISBN: 978-3-540-38876-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics