Abstract
We give efficient deterministic distributed algorithms which given a graph G from a proper minor-closed family \(\mathcal{C}\) find an approximation of a minimum dominating set in G and a minimum connected dominating set in G. The algorithms are deterministic and run in a poly-logarithmic number of rounds. The approximation accomplished differs from an optimal by a multiplicative factor of (1+o(1)).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network Decomposition and Locality in Distributed Computation. In: Proc. 30th IEEE Symp. on Foundations of Computer Science, pp. 364–369 (1989)
Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal parallel list ranking. Information and Control 70, 32–53 (1986)
Czygrinow, A., Hańćkowiak, M.: Distributed algorithms for weighted problems in sparse graphs. Journal of Discrete Algorithms (2004) (in press)
Czygrinow, A., Hańćkowiak, M., Szymańska, E.: Distributed approximation algorithms for planar graphs. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998. Springer, Heidelberg (2006)
Czygrinow, A., Hańćkowiak, M.: Distributed approximation algorithms in unit disk graphs (manuscript)
Diestel, R.: Graph Theory. Springer, New York (1997)
Dubhashi, D., Mei, A., Panconesi, A., Radhakrishnan, J., Srinivasan, A.: Fast Distributed Algorithms for (Weakly) Connected Dominating Sets and Linear-Size Skeletons. In: Proc. of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 717–724 (2003)
Elkin, M.: An Overview of Distributed Approximation. ACM SIGACT News Distributed Computing Column 35(4), 40–57 (2004) (whole number 132)
Kuhn, F., Wattenhofer, R.: Constant-Time Distributed Dominating Set Approximation. In: 22nd ACM Symposium on the Principles of Distributed Computing (PODC), Boston, Massachusetts, USA (July 2003)
Kuhn, F., Moscibroda, T., Wattenhofer, R.: What Cannot Be Computed Locally! In: Proceedings of 23rd ACM Symposium on the Principles of Distributed Computing (PODC), pp. 300–309 (2004)
Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Fast deterministic distributed maximal independent set computation on growth-bounded graphs. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 273–287. Springer, Heidelberg (2005)
Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Local Approximation Schemes for Ad Hoc and Sensor Networks. In: 3rd ACM Joint Workshop on Foundations of Mobile Computing (DIALM-POMC), Cologne, Germany (2005)
Kutten, S., Peleg, D.: Fast distributed construction of k-dominating sets and applications. In: Proceedings of the Fourteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 238–251 (1995)
Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing 21(1), 193–201 (1992)
Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15(4), 1036–1053 (1986)
Nesetril, J., Ossona de Mendez, P.: Colorings and homomorphisms of minor closed classes. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete and Computational Geometry, The Goodman-Pollack Festschrift, Algorithms and Combinatorics, vol. 25, pp. 651–664. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Czygrinow, A., Hańćkowiak, M. (2006). Distributed Almost Exact Approximations for Minor-Closed Families. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_24
Download citation
DOI: https://doi.org/10.1007/11841036_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38875-3
Online ISBN: 978-3-540-38876-0
eBook Packages: Computer ScienceComputer Science (R0)