Abstract
In this paper, we analyze the second eigenvector technique of spectral partitioning on the planted partition random graph model, by constructing a recursive algorithm using the second eigenvectors in order to learn the planted partitions. The correctness of our algorithm is not based on the ratio-cut interpretation of the second eigenvector, but exploits instead the stability of the eigenvector subspace. As a result, we get an improved cluster separation bound in terms of dependence on the maximum variance. We also extend our results for a clustering problem in the case of sparse graphs.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Achlioptas, D., McSherry, F.: On spectral learning of mixtures of distributions. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS, vol. 3559, pp. 458–469. Springer, Heidelberg (2005)
Alon, N.: Eigenvalues and expanders. Combinatorica 6(2), 83–96 (1986)
Alon, N., Kahale, N.: A spectral technique for coloring random 3-colorable graphs. SIAM Journal on Computing 26(6), 1733–1748 (1997)
Azar, Y., Fiat, A., Karlin, A.R., McSherry, F., Saia, J.: Spectral analysis of data. In: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pp. 619–626 (2001)
Boppana, R.: Eigenvalues and graph bisection: an average case analysis. In: Proceedings of the 28th IEEE Symposium on Foundations of Computer Science (1987)
Bui, T., Chaudhuri, S., Leighton, T., Sipser, M.: Graph bisection algorithms with good average case behavior. Combinatorica 7, 171–191 (1987)
Cheng, D., Kannan, R., Vempala, S., Wang, G.: A Divide-and- Merge methodology for Clustering. In: Proc. of the 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS), pp. 196–205
Coja-Oghlan, A.: A spectral heuristic for bisecting random graphs. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (2005)
Coja-Oghlan, A.: An adaptive spectral heuristic for partitioning random graphs. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 691–702. Springer, Heidelberg (2006)
Dasgupta, A., Hopcroft, J., McSherry, F.: Spectral analysis of random Graphs with skewed degree distributions. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, pp. 602–610 (2004)
Dyer, M., Frieze, A.: Fast Solution of Some Random NP-Hard Problems. In: Proceedings of the 27th IEEE Symposium on Foundations of Computer Science, pp. 331–336 (1986)
Feige, U., Ofek, E.: Spectral techniques applied to sparse random graphs. Random Structures and Algorithms 27(2), 251–275 (2005)
Fiedler, M.: Algebraic connectibility of graphs. Czechoslovak Mathematical Journal 23(98), 298–305 (1973)
Friedman, J., Kahn, J., Szemeredi, E.: On the second eigenvalue of random regular graphs. In: Proceedings of the 21st annual ACM Symposium on Theory of computing, pp. 587–598 (1989)
Furedi, Z., Komlos, J.: The eigenvalues of random symmetric matrices. Combinatorica 1(3), 233–241 (1981)
Golub, G., Van Loan, C.: Matrix computations, 3rd edn. Johns Hopkins University Press, London (1996)
Kannan, R., Vempala, S., Vetta, A.: On Clusterings: Good, bad and spectral. In: Proceedings of the Symposium on Foundations of Computer Science, pp. 497–515 (2000)
McSherry, F.: Spectral partitioning of random graphs. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, pp. 529–537 (2001)
Sinclair, A., Jerrum, M.: Conductance and the mixing property of markov chains, the approximation of the permenant resolved. In: Proc. of the 20th Annual ACM Symposium on Theory of Computing, pp. 235–244 (1988)
Spielman, D., Teng, S.-h.: Spectral Partitioning Works: Planar graphs and finite element meshes. In: Proc. of the 37th Annual Symposium on Foundations of Computer Science (FOCS 1996), pp. 96–105 (1996)
Verma, D., Meila, M.: A comparison of spectral clustering algorithms, TR UW-CSE-03-05-01, Department of Computer Science and Engineering, University of Washington (2005)
Van Vu: Spectral norm of random matrices. In: Proc. of the 36th annual ACM Symposium on Theory of computing, pp. 619–626 (2005)
Zhao, Y., Karypis, G.: Evaluation of hierarchical clustering algorithms for document datasets. In: Proc. of the 11 International Conference on Information and Knowledge Management, pp. 515–524 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dasgupta, A., Hopcroft, J., Kannan, R., Mitra, P. (2006). Spectral Clustering by Recursive Partitioning. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_25
Download citation
DOI: https://doi.org/10.1007/11841036_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38875-3
Online ISBN: 978-3-540-38876-0
eBook Packages: Computer ScienceComputer Science (R0)