Skip to main content

On the Complexity of the Multiplication Method for Monotone CNF/DNF Dualization

  • Conference paper
Algorithms – ESA 2006 (ESA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4168))

Included in the following conference series:

Abstract

Given the irredundant CNF representation φ of a monotone Boolean function f:{0,1}n↦{0,1}, the dualization problem calls for finding the corresponding unique irredundant DNF representation ψ of f. The (generalized) multiplication method works by repeatedly dividing the clauses of φ into (not necessarily disjoint) groups, multiplying-out the clauses in each group, and then reducing the result by applying the absorption law. We present the first non-trivial upper-bounds on the complexity of this multiplication method. Precisely, we show that if the grouping of the clauses is done in an output-independent way, then multiplication can be performed in sub-exponential time \((n|\psi|)^{(\sqrt{|\phi|})}|\phi|^{O(log n)}\). On the other hand, multiplication can be carried-out in quasi-polynomial time poly (n,|ψ|)·|ψ|o(log|ψ|), provided that the grouping is done depending on the intermediate outputs produced during the multiplication process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthony, M., Biggs, N.: Computational Learning Theory. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  2. Berge, C.: Hypergraphs. North Holland Mathematical Library, vol. 445 (1989)

    Google Scholar 

  3. Bioch, J.C., Ibaraki, T.: Complexity of identification and dualization of positive Boolean functions. Information and Computation 123, 50–63 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L.: Generating Maximal Independent Sets for Hypergraphs with Bounded Edge-Intersections. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 488–498. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L., Makino, K.: Dual-bounded generating problems: All minimal integer solutions for a monotone system of linear inequalities. SIAM J. Comput. 31(5), 1624–1643 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L.: Computing Many Maximal Independent Sets for Hypergraphs in Parallel, DIMACS technical report2004-44, Rutgers University, http://dimacs.rutgers.edu/TechnicalReports/2004.html

  7. Boros, E., Gurvich, V., Hammer, P.L.: Dual subimplicants of positive Boolean functions. Optimization Methods and Software 10, 147–156 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Colbourn, C.J.: The combinatorics of network reliability. Oxford University Press, Oxford (1987)

    Google Scholar 

  9. Dahlhaus, E., Karpinski, M.: A fast parallel algorithm for computing all maximal cliques in a graph and the related problems. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 139–144. Springer, Heidelberg (1988)

    Google Scholar 

  10. Domingo, C., Mishra, N., Pitt, L.: Efficient read-restricted monotone CNF/DNF dualization by learning with membership queries. Machine learning 37, 89–110 (1999)

    Article  MATH  Google Scholar 

  11. Eiter, T.: Exact Transversal Hypergraphs and Application to Boolean μ-Functions. J. Symb. Comput. 17(3), 215–225 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. SIAM J. Comput. 24, 1278–1304 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and generating hypergraph transversals. SIAM J. Comput. 32(2), 514–537 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Elbassioni, K.: On the complexity of monotone Boolean duality testing, DIMACS Technical Report 2006-1, Rutgers University, http://dimacs.rutgers.edu/TechnicalReports/2006.html

  15. Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms. J. Algorithms 21, 618–628 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Garcia-Molina, H., Barbara, D.: How to assign votes in a distributed system. Journal of the ACM 32, 841–860 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gunopulos, D., Khardon, R., Mannila, H., Toivonen, H.: Data mining, hypergraph transversals and machine learning. In: Proc. the 16th ACM-SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 1997), pp. 12–15 (1997)

    Google Scholar 

  18. Ibaraki, T., Kameda, T.: A theory of coteries: Mutual exclusion in distributed systems. IEEE Transactions on Parallel and Distributed Systems 4, 779–794 (1993)

    Article  Google Scholar 

  19. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Info. Process. Lett. 27, 119–123 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kavvadias, D.J., Papadimitriou, C., Sideri, M.: On Horn envelopes and hypergraph transversals. In: Ng, K.W., Balasubramanian, N.V., Raghavan, P., Chin, F.Y.L. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 399–405. Springer, Heidelberg (1993)

    Google Scholar 

  21. Khachiyan, L.: Transversal hypergraphs and families of polyhedral cones. In: Hadjisavvas, N., Pardalos, P. (eds.) Advances in Convex Analysis and Global Optimization, Honoring the memory of K. Carathéodory, pp. 105–118. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  22. Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V., Makino, K.: On the Complexity of Some Enumeration Problems for Matroids. SIAM J. Discrete Math. 19(4), 966–984 (2005)

    Article  MathSciNet  Google Scholar 

  23. Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V.: A New Algorithm for the Hypergraph Transversal Problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 767–776. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Lawler, E., Lenstra, J.K., Rinnooy Kan, A.H.G.: Generating all maximal independent sets: NP-hardness and polynomial-time algorithms. SIAM J. Comput. 9, 558–565 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lovász, L.: Combinatorial optimization: some problems and trends, DIMACS Technical Report 92-53, Rutgers University (1992)

    Google Scholar 

  26. Mannila, H., Räihä, K.J.: Design by example: An application of Armstrong relations. Journal of Computer and System Science 22, 126–141 (1986)

    Article  Google Scholar 

  27. Papadimitriou, C.: NP-completeness: A retrospective. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 2–6. Springer, Heidelberg (1997)

    Google Scholar 

  28. Mishra, N., Pitt, L.: Generating all maximal independent sets of bounded-degree hypergraphs. In: Proceedings of the 10th Annual Conference on Computational Learning Theory (COLT), Nashville, TN, pp. 211–217 (1997)

    Google Scholar 

  29. Ramamurthy, K.G.: Coherent Structures and Simple Games. Kluwer Academic Publishers, Dordrecht (1990)

    MATH  Google Scholar 

  30. Takata, K.: On the sequential method for listing minimal hitting sets. In: Proc. SIAM Workshop on Discrete Mathematics and Data Mining (DM & DM), Arlington, VA, pp. 109–120 (April 2002)

    Google Scholar 

  31. Tamaki, H.: Space-efficient enumeration of minimal transversals of a hypergraph. IPSJ-AL 75, 29–36 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elbassioni, K.M. (2006). On the Complexity of the Multiplication Method for Monotone CNF/DNF Dualization. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_32

Download citation

  • DOI: https://doi.org/10.1007/11841036_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38875-3

  • Online ISBN: 978-3-540-38876-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics