Abstract
Sharir and Welzl introduced an abstract framework for optimization problems, called LP-type problems or also generalized linear programming problems, which proved useful in algorithm design. We define a new, and as we believe, simpler and more natural framework: violator spaces, which constitute a proper generalization of LP-type problems. We show that Clarkson’s randomized algorithms for low-dimensional linear programming work in the context of violator spaces. For example, in this way we obtain the fastest known algorithm for the P-matrix generalized linear complementarity problem with a constant number of blocks. We also give two new characterizations of LP-type problems: they are equivalent to acyclic violator spaces, as well as to concrete LP-type problems (informally, the constraints in a concrete LP-type problem are subsets of a linearly ordered ground set, and the value of a set of constraints is the minimum of its intersection).
The first and the third author acknowledge support from the Swiss Science Foundation (SNF), Project No. 200020-112068/1. The fourth author acknowledges support from the Czech Science Foundation (GACR), Grant No. 201/05/H014. For a full paper see [1].
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gärtner, B., Matoušek, J., Rüst, L., Škovroň, P.: Violator spaces: Structure and algorithms. arXiv.org e-Print archive (2006)
Sharir, M., Welzl, E.: A combinatorial bound for linear programming and related problems. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 569–579. Springer, Heidelberg (1992)
Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming. Algorithmica 16, 498–516 (1996)
Kalai, G.: A subexponential randomized simplex algorithm. In: Proc. 24th Annual ACM Symposium on Theory of Computing (STOC), pp. 475–482 (1992)
Amenta, N.: Bounded boxes, Hausdorff distance, and a new proof of an interesting Helly-type theorem. In: Proc. 10th Annual Symposium on Computational Geometry (SCG), pp. 340–347. ACM Press, New York (1994)
Amenta, N.: Helly theorems and generalized linear programming. Discrete and Computational Geometry 12, 241–261 (1994)
Björklund, H., Sandberg, S., Vorobyov, S.: A discrete subexponential algorithm for parity games. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 663–674. Springer, Heidelberg (2003)
Halman, N.: Discrete and Lexicographic Helly Theorems and Their Relations to LP-type problems. PhD thesis, Tel-Aviv University (2004)
Clarkson, K.L.: Las Vegas algorithms for linear and integer programming. Journal of the ACM 42, 488–499 (1995)
Gärtner, B., Welzl, E.: Linear programming - randomization and abstract frameworks. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 669–687. Springer, Heidelberg (1996)
Chazelle, B., Matoušek, J.: On linear-time deterministic algorithms for optimization problems in fixed dimension. Journal of Algorithms 21, 579–597 (1996)
Matoušek, J.: On geometric optimization with few violated constraints. Discrete and Computational Geometry 14, 365–384 (1995)
Gärtner, B., Welzl, E.: A simple sampling lemma - analysis and applications in geometric optimization. Discrete and Computational Geometry 25(4), 569–590 (2001)
Chan, T.: An optimal randomized algorithm for maximum Tukey depth. In: Proc. 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 423–429 (2004)
Amenta, N.: A short proof of an interesting Helly-type theorem. Discrete and Computational Geometry 15, 423–427 (1996)
Szabó, T., Welzl, E.: Unique sink orientations of cubes. In: Proc. 42nd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 547–555 (2000)
Gärtner, B., Morris Jr., W.D., Rüst, L.: Unique sink orientations of grids. In: Jünger, M., Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509, pp. 210–224. Springer, Heidelberg (2005)
Morris Jr., W.D.: Randomized principal pivot algorithms for P-matrix linear complementarity problems. Mathematical Programming, Series A 92, 285–296 (2002)
Matoušek, J.: The number of unique sink orientations of the hypercube. Combinatorica (to appear, 2006)
Morris Jr., W.D.: Distinguishing cube orientations arising from linear programs (manuscript, 2002)
Develin, M.: LP-orientations of cubes and crosspolytopes. Advances in Geometry 4, 459–468 (2004)
Matoušek, J., Szabó, T.: Random Edge can be exponential on abstract cubes. In: Proc. 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 92–100 (2004)
Schurr, I., Szabó, T.: Finding the sink takes some time. Discrete and Computational Geometry 31, 627–642 (2004)
Schurr, I., Szabó, T.: Jumping doesn’t help in abstract cubes. In: Jünger, M., Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509, pp. 225–235. Springer, Heidelberg (2005)
Gärtner, B., Schurr, I.: Linear programming and unique sink orientations. In: Proc. 17th Annual Symposium on Discrete Algorithms (SODA), pp. 749–757 (2006)
Björklund, H., Vorobyov, S.: Combinatorial structure and randomized subexponential algorithms for infinite games. Theoretical Computer Science (in press, 2005)
Björklund, H., Sandberg, S., Vorobyov, S.: A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 673–685. Springer, Heidelberg (2004)
Gärtner, B., Rüst, L.: Simple stochastic games and P-matrix generalized linear complementarity problems. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 209–220. Springer, Heidelberg (2005)
Megiddo, N.: A note on the complexity of P-matrix LCP and computing an equilibrium. Technical report, IBM Almaden Research Center, San Jose (1988)
Škovroň, P.: Generalized linear programming. Master’s thesis, Charles University, Prague, Faculty of Mathematics and Physics (2002)
Cottle, R.W., Dantzig, G.B.: A generalization of the linear complementarity problem. Journal on Combinatorial Theory 8, 79–90 (1970)
Cottle, R.W., Pang, J., Stone, R.E.: The Linear Complementarity Problem. Academic Press, London (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gärtner, B., Matoušek, J., Rüst, L., Škovroň, P. (2006). Violator Spaces: Structure and Algorithms. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_36
Download citation
DOI: https://doi.org/10.1007/11841036_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38875-3
Online ISBN: 978-3-540-38876-0
eBook Packages: Computer ScienceComputer Science (R0)