Abstract
Cluster detection for a set P of n points in geographic situations is usually dependent on land cover or another thematic map layer. This occurs for instance if the points of P can only occur in one land cover type. We extend the definition of clusters to region-restricted clusters, and give efficient algorithms for exact computation and approximation. The algorithm determines all axis-parallel squares with exactly m out of n points inside, size at most some prespepcified value, and area of a given land cover type at most another prespecified value. The exact algorithm runs in O(nmlog2 n + (nm+nn f )log2 n f ) time, where n f is the number of edges that bound the regions with the given land cover type. The approximation algorithm allows the square to be a factor 1+ε too large, and runs in O(n logn + n/ε 2 + n f log2 n f + (nlog2 n f )/(mε 2)) time. We also show how to compute largest clusters and outliers.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, P.K., de Berg, M., Matoušek, J., Schwarzkopf, O.: Constructing levels in arrangements and higher order Voronoi diagrams. SIAM J. Comput. 27, 654–667 (1998)
Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry, Contemporary Mathematics, vol. 223, pp. 1–56. American Mathematical Society, Providence (1999)
Aggarwal, A., Imai, H., Katoh, N., Suri, S.: Finding k points with minimum diameter and related problems. J. Algorithms 12, 38–56 (1991)
Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)
Chazelle, B., Edelsbrunner, H., Guibas, L.J., Sharir, M.: Algorithms for bichromatic line segment problems and polyhedral terrains. Algorithmica 11, 116–132 (1994)
Chazelle, B., Guibas, L.J.: Fractional cascading: I. A data structuring technique. Algorithmica 1(3), 133–162 (1986)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)
Datta, A., Lenhof, H.-P., Schwarz, C., Smid, M.: Static and dynamic algorithms for k-point clustering problems. J. Algorithms 19, 474–503 (1995)
de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (2000)
Eppstein, D., Erickson, J.: Iterated nearest neighbors and finding minimal polytopes. Discrete Comput. Geom. 11, 321–350 (1994)
Gudmundsson, J., van Kreveld, M., Narasimhan, G.: Region-restricted clustering for geographic data mining. Technical Report UU-CS-2006-031, Department of Information and Computing Sciences, Utrecht University (2006)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Academic Press, San Diego (2001)
Har-Peled, S., Mazumdar, S.: Fast algorithms for computing the smallest k-enclosing circle. Algorithmica 41, 147–157 (2005)
Hartigan, J.A.: Clustering Algorithms. John Wiley & Sons, New York (1975)
Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1988)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys 31, 264–323 (1999)
Koperski, K., Adhikary, J., Han, J.: Spatial data mining: Progress and challenges. In: Proc. SIGMOD 1996 Workshop on Research Issues on Data Mining and Knowledge Discovery (1996)
Lee, D.T.: On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput. C-31, 478–487 (1982)
Miller, H.J., Han, J. (eds.): Geographic Data Mining and Knowledge Discovery. Taylor & Francis, London (2001)
O’Sullivan, D., Unwin, D.J.: Geographic Information Analysis. John Wiley & Sons, Hoboken (2003)
Roddick, J., Hornsby, K., Spiliopoulou, M.: An updated bibliography of temporal, spatial, and spatio-temporal data mining research. In: Roddick, J.F., Hornsby, K.S. (eds.) TSDM 2000. LNCS, vol. 2007, pp. 147–163. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gudmundsson, J., van Kreveld, M., Narasimhan, G. (2006). Region-Restricted Clustering for Geographic Data Mining. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_37
Download citation
DOI: https://doi.org/10.1007/11841036_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38875-3
Online ISBN: 978-3-540-38876-0
eBook Packages: Computer ScienceComputer Science (R0)