Abstract
We present an O(n 3 (loglogn/logn)5/4) time algorithm for all pairs shortest paths. This algorithm improves on the best previous result of O(n 3/logn) time.
Research supported in part by NSF grant 0310245.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)
Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data Structures and Algorithms. Addison-Wesley, Reading (1983)
Albers, S., Hagerup, T.: Improved parallel integer sorting without concurrent writing. Information and Computation 136, 25–51 (1997)
Batcher, K.E.: Sorting networks and their applications. In: Proc. 1968 AFIPS Spring Joint Summer Computer Conference, pp. 307–314 (1968)
Chan, T.M.: All-pairs shortest paths with real weights in O(n 3/logn) time. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 318–324. Springer, Heidelberg (2005)
Dobosiewicz, W.: A more efficient algorithm for min-plus multiplication. Inter. J. Comput. Math. 32, 49–60 (1990)
Fredman, M.L.: New bounds on the complexity of the shortest path problem. SIAM J. Computing 5, 83–89 (1976)
Fredman, M.L., Tarjan, R.: Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM 34, 596–615 (1987)
Galil, Z., Margalit, O.: All pairs shortest distances for graphs with small integer length edges. Information and Computation 134, 103–139 (1997)
Han, Y.: Improved algorithms for all pairs shortest paths. Information Processing Letters 91, 245–250 (2004)
Han, Y.: Achieving O(n 3/logn) time for all pairs shortest paths by using a smaller table. In: Proc. 21st Int. Conf. on Computers and Their Applications (CATA 2006), pp. 36–37 (2006)
Pettie, S.: A faster all-pairs shortest path algorithm for real-weighted sparse graphs. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 85–97. Springer, Heidelberg (2002)
Pettie, S., Ramachandran, V.: A shortest path algorithm for real-weighted undirected graphs. SIAM J. Comput. 34(6), 1398–1431 (2005)
Sankowski, P.: Shortest paths in matrix multiplication time. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 770–778. Springer, Heidelberg (2005)
Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs. J. Comput. Syst. Sci. 51, 400–403 (1995)
Takaoka, T.: A new upper bound on the complexity of the all pairs shortest path problem. Information Processing Letters 43, 195–199 (1992)
Takaoka, T.: An O(n 3 loglogn/logn) time algorithm for the all-pairs shortest path problem. Information Processing Letters 96, 155–161 (2005)
Thorup, M.: Undirected single source shortest paths with positive integer weights in linear time. Journal of ACM 46(3), 362–394 (1999)
Yuster, R., Zwick, U.: Answering distance queries in directed graphs using fast matrix multiplication. In: 46th Annual IEEE Symposium on Foundations of Computer Science, pp. 389–396. IEEE Comput. Soc., Los Alamitos (2005)
Zwick, U.: All pairs shortest paths using bridging sets and rectangular matrix multiplication. Journal of the ACM 49(3), 289–317 (2002)
Zwick, U.: A slightly improved sub-cubic algorithm for the all pairs shortest paths problem. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 921–932. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Han, Y. (2006). An O(n 3 (loglogn/logn)5/4) Time Algorithm for All Pairs Shortest Paths. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_38
Download citation
DOI: https://doi.org/10.1007/11841036_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38875-3
Online ISBN: 978-3-540-38876-0
eBook Packages: Computer ScienceComputer Science (R0)