Skip to main content

Kinetic Collision Detection for Convex Fat Objects

  • Conference paper
Algorithms – ESA 2006 (ESA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4168))

Included in the following conference series:

  • 3180 Accesses

Abstract

We design compact and responsive kinetic data structures for detecting collisions between n convex fat objects in 3-dimensional space that can have arbitrary sizes. Our main results are:

(i) If the objects are 3-dimensional balls that roll on a plane, then we can detect collisions with a KDS of size O(nlogn) that can handle events in O(logn) time. This structure processes O(n 2) events in the worst case, assuming that the objects follow constant-degree algebraic trajectories.

(ii) If the objects are convex fat 3-dimensional objects of constant complexity that are free-flying in \({\mathbb R}^3\), then we can detect collisions with a KDS of O(nlog6 n) size that can handle events in O(log6 n) time. This structure processes O(n 2) events in the worst case, assuming that the objects follow constant-degree algebraic trajectories. If the objects have similar sizes then the size of the KDS becomes O(n) and events can be handled in O(1) time.

M.A. and S.-H.P. were supported by the Netherlands’ Organisation for Scientific Research (NWO) under project no. 612.065.307. M.d.B. was supported by the Netherlands’ Organisation for Scientific Research (NWO) under project no. 639.023.301.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, P.K., Basch, J., Guibas, L.J., Hershberger, J., Zhang, L.: Deformable free space tilings for kinetic collision detection. International Journal of Robotics Research 21, 179–197 (2002)

    Article  Google Scholar 

  2. Aurenhammer, F., Edelsbrunner, H.: An optimal algorithm for constructing the weighted Voronoi diagram in the plane. Pattern Recognition 17(2), 251–257 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Basch, J., Erickson, J., Guibas, L.J., Hershberger, J., Zhang, L.: Kinetic collision detection for two simple polygons. In: Proc. 10th ACM-SIAM Symposium on Discrete Algorithms, pp. 102–111 (1999)

    Google Scholar 

  4. Basch, J., Guibas, L., Hershberger, J.: Data structures for mobile data. Journal of Algorithms 31, 1–28 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Basch, J., Guibas, L., Zhang, L.: Proximity problems on moving points. In: Proc. 13th Symposium on Computational Geometry, pp. 344–351 (1997)

    Google Scholar 

  6. de Berg, M., Comba, J., Guibas, L.: A segment-tree based kinetic bsp. In: Proc. 17th Symposium on Computational Geometry, pp. 134–140 (2001)

    Google Scholar 

  7. de Berg, M., Katz, M., van der Stappen, F., Vleugels, J.: Realistic input models for geometric algorithms. Algorithmica 34, 81–97 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  9. Coming, D., Staadt, O.: Kinetic Sweep and Prune for Collision Detection. In: Proc. Workshop on Virtual Reality Interactions and Physical Simulations, pp. 81–90 (2005)

    Google Scholar 

  10. Erickson, J., Guibas, L., Stolfi, J., Zhang, L.: Separation-sensitive collision detection for convex objects. In: Proc. 10th ACM-SIAM Symposium on Discrete Algorithms, pp. 327–336 (1999)

    Google Scholar 

  11. Guibas, L.: Kinetic data structures: A state of the art report. In: Proc. 3rd Workshop on Algorithmic Foundations of Robotics, pp. 191–209 (1998)

    Google Scholar 

  12. Guibas, L.: Motion. In: Goodman, J., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., pp. 1117–1134. CRC Press, Boca Raton (2004)

    Google Scholar 

  13. Guibas, L., Xie, F., Zhang, L.: Kinetic collision detection: Algorithms and experiments. In: Proc. International Conference on Robotics and Automation, pp. 2903–2910 (2001)

    Google Scholar 

  14. Katz, M.: 3-D vertical ray shooting and 2-D point enclosure, range searching, and arc shooting amidst convex fat objects. Computational Geometry: Theory and Applications 8, 299–316 (1998)

    Google Scholar 

  15. Kim, D., Guibas, L., Shin, S.Y.: Fast collision detection among multiple moving spheres. IEEE Transactions on Visualization and Computer Graphics 4(3), 230–242 (1998)

    Article  Google Scholar 

  16. Kim, H.K., Guibas, L., Shin, S.Y.: Efficient collision detection among moving spheres with unknown trajectories. Algorithmica 43, 195–210 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kirkpatrick, D., Snoeyink, J., Speckmann, B.: Kinetic collision detection for simple polygons. International Journal of Computational Geometry and Applications 12(1&2), 3–27 (2002)

    MATH  MathSciNet  Google Scholar 

  18. Kirkpatrick, D., Speckmann, B.: Kinetic maintenance of context-sensitive hierarchical representations for disjoint simple polygons. In: Proc. 18th ACM Symposium on Computational Geometry, pp. 179–188 (2002)

    Google Scholar 

  19. Lin, M., Manocha, D.: Collision and proximity queries. In: Goodman, J., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., pp. 787–807. CRC Press, Boca Raton (2004)

    Google Scholar 

  20. van der Stappen, A.: Motion planning amidst fat obstacles. PhD thesis, Utrecht University, Utrecht, The Netherlands (1994)

    Google Scholar 

  21. Zhou, Y., Suri, S.: Analysis of a bounding box heuristic for object intersection. In: Proc.10th ACM-SIAM Symposium on Discrete Algorithms, pp. 830–839 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abam, M.A., de Berg, M., Poon, S.H., Speckmann, B. (2006). Kinetic Collision Detection for Convex Fat Objects. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_4

Download citation

  • DOI: https://doi.org/10.1007/11841036_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38875-3

  • Online ISBN: 978-3-540-38876-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics