Abstract
We design compact and responsive kinetic data structures for detecting collisions between n convex fat objects in 3-dimensional space that can have arbitrary sizes. Our main results are:
(i) If the objects are 3-dimensional balls that roll on a plane, then we can detect collisions with a KDS of size O(nlogn) that can handle events in O(logn) time. This structure processes O(n 2) events in the worst case, assuming that the objects follow constant-degree algebraic trajectories.
(ii) If the objects are convex fat 3-dimensional objects of constant complexity that are free-flying in \({\mathbb R}^3\), then we can detect collisions with a KDS of O(nlog6 n) size that can handle events in O(log6 n) time. This structure processes O(n 2) events in the worst case, assuming that the objects follow constant-degree algebraic trajectories. If the objects have similar sizes then the size of the KDS becomes O(n) and events can be handled in O(1) time.
M.A. and S.-H.P. were supported by the Netherlands’ Organisation for Scientific Research (NWO) under project no. 612.065.307. M.d.B. was supported by the Netherlands’ Organisation for Scientific Research (NWO) under project no. 639.023.301.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, P.K., Basch, J., Guibas, L.J., Hershberger, J., Zhang, L.: Deformable free space tilings for kinetic collision detection. International Journal of Robotics Research 21, 179–197 (2002)
Aurenhammer, F., Edelsbrunner, H.: An optimal algorithm for constructing the weighted Voronoi diagram in the plane. Pattern Recognition 17(2), 251–257 (1984)
Basch, J., Erickson, J., Guibas, L.J., Hershberger, J., Zhang, L.: Kinetic collision detection for two simple polygons. In: Proc. 10th ACM-SIAM Symposium on Discrete Algorithms, pp. 102–111 (1999)
Basch, J., Guibas, L., Hershberger, J.: Data structures for mobile data. Journal of Algorithms 31, 1–28 (1999)
Basch, J., Guibas, L., Zhang, L.: Proximity problems on moving points. In: Proc. 13th Symposium on Computational Geometry, pp. 344–351 (1997)
de Berg, M., Comba, J., Guibas, L.: A segment-tree based kinetic bsp. In: Proc. 17th Symposium on Computational Geometry, pp. 134–140 (2001)
de Berg, M., Katz, M., van der Stappen, F., Vleugels, J.: Realistic input models for geometric algorithms. Algorithmica 34, 81–97 (2002)
de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (2000)
Coming, D., Staadt, O.: Kinetic Sweep and Prune for Collision Detection. In: Proc. Workshop on Virtual Reality Interactions and Physical Simulations, pp. 81–90 (2005)
Erickson, J., Guibas, L., Stolfi, J., Zhang, L.: Separation-sensitive collision detection for convex objects. In: Proc. 10th ACM-SIAM Symposium on Discrete Algorithms, pp. 327–336 (1999)
Guibas, L.: Kinetic data structures: A state of the art report. In: Proc. 3rd Workshop on Algorithmic Foundations of Robotics, pp. 191–209 (1998)
Guibas, L.: Motion. In: Goodman, J., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., pp. 1117–1134. CRC Press, Boca Raton (2004)
Guibas, L., Xie, F., Zhang, L.: Kinetic collision detection: Algorithms and experiments. In: Proc. International Conference on Robotics and Automation, pp. 2903–2910 (2001)
Katz, M.: 3-D vertical ray shooting and 2-D point enclosure, range searching, and arc shooting amidst convex fat objects. Computational Geometry: Theory and Applications 8, 299–316 (1998)
Kim, D., Guibas, L., Shin, S.Y.: Fast collision detection among multiple moving spheres. IEEE Transactions on Visualization and Computer Graphics 4(3), 230–242 (1998)
Kim, H.K., Guibas, L., Shin, S.Y.: Efficient collision detection among moving spheres with unknown trajectories. Algorithmica 43, 195–210 (2005)
Kirkpatrick, D., Snoeyink, J., Speckmann, B.: Kinetic collision detection for simple polygons. International Journal of Computational Geometry and Applications 12(1&2), 3–27 (2002)
Kirkpatrick, D., Speckmann, B.: Kinetic maintenance of context-sensitive hierarchical representations for disjoint simple polygons. In: Proc. 18th ACM Symposium on Computational Geometry, pp. 179–188 (2002)
Lin, M., Manocha, D.: Collision and proximity queries. In: Goodman, J., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., pp. 787–807. CRC Press, Boca Raton (2004)
van der Stappen, A.: Motion planning amidst fat obstacles. PhD thesis, Utrecht University, Utrecht, The Netherlands (1994)
Zhou, Y., Suri, S.: Analysis of a bounding box heuristic for object intersection. In: Proc.10th ACM-SIAM Symposium on Discrete Algorithms, pp. 830–839 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Abam, M.A., de Berg, M., Poon, S.H., Speckmann, B. (2006). Kinetic Collision Detection for Convex Fat Objects. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_4
Download citation
DOI: https://doi.org/10.1007/11841036_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38875-3
Online ISBN: 978-3-540-38876-0
eBook Packages: Computer ScienceComputer Science (R0)