Skip to main content

A Unified Approach to Approximating Partial Covering Problems

  • Conference paper
Algorithms – ESA 2006 (ESA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4168))

Included in the following conference series:

Abstract

An instance of the generalized partial cover problem consists of a ground set U and a family of subsets \({\cal S} \subseteq 2^U\). Each element eU is associated with a profit p(e), whereas each subset \(S \in {\cal S}\) has a cost c(S). The objective is to find a minimum cost subcollection \({\cal S}' \subseteq {\cal S}\) such that the combined profit of the elements covered by \({\cal S}'\) is at least P, a specified profit bound. In the prize-collecting version of this problem, there is no strict requirement to cover any element; however, if the subsets we pick leave an element eU uncovered, we incur a penalty of π(e). The goal is to identify a subcollection \({\cal S}' \subseteq {\cal S}\) that minimizes the cost of \({\cal S}'\) plus the penalties of uncovered elements.

Although problem-specific connections between the partial cover and the prize-collecting variants of a given covering problem have been explored and exploited, a more general connection remained open. The main contribution of this paper is to establish a formal relationship between these two variants. As a result, we present a unified framework for approximating problems that can be formulated or interpreted as special cases of generalized partial cover. We demonstrate the applicability of our method on a diverse collection of covering problems, for some of which we obtain the first non-trivial approximability results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: A general approach to online network optimization problems. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 577–586 (2004)

    Google Scholar 

  2. Balas, E., Padberg, M.: Set partitioning: A survey. SIAM Review 18(4), 710–760 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bar-Yehuda, R.: Using homogeneous weights for approximating the partial cover problem. Journal of Algorithms 39(2), 137–144 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bshouty, N.H., Burroughs, L.: Massaging a linear programming solution to give a 2-approximation for a generalization of the vertex cover problem. In: Proceedings of the 15th Annual Symposium on Theoretical Aspects of Computer Science, pp. 298–308 (1998)

    Google Scholar 

  5. Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., Sivakumar, D.: On the hardness of approximating multicut and sparsest-cut. In: Proceedings of the 20th Annual IEEE Conference on Computational Complexity, pp. 144–153 (2005)

    Google Scholar 

  6. Chudak, F.A., Roughgarden, T., Williamson, D.P.: Approximate k-MSTs and k-Steiner trees via the primal-dual method and Lagrangean relaxation. Mathematical Programming 100(2), 411–421 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial Optimization. John Wiley and Sons, New York (1997)

    Google Scholar 

  8. Edmonds, J., Johnson, E.L.: Matching: A well-solved class of integer linear programs. In: Combinatorial Structures and their Applications, pp. 89–92. Gordon and Breach, New York (1970)

    Google Scholar 

  9. Even, G., Feldman, J., Kortsarz, G., Nutov, Z.: A 3/2-approximation algorithm for augmenting the edge-connectivity of a graph from 1 to 2 using a subset of a given edge set. In: Proceedings of the 4th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, pp. 90–101 (2001)

    Google Scholar 

  10. Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45(4), 634–652 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fujito, T.: On approximation of the submodular set cover problem. Operations Research Letters 25(4), 169–174 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial covering problems. Journal of Algorithms 53(1), 55–84 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Garfinkel, R.S., Nemhauser, G.L.: Optimal set covering: A survey. In: Geoffrion, A.M. (ed.) Perspectives on Optimization, pp. 164–183 (1972)

    Google Scholar 

  14. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their applications. SIAM Journal on Computing 25(2), 235–251 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gaur, D.R., Ibaraki, T., Krishnamurti, R.: Constant ratio approximation algorithms for the rectangle stabbing problem and the rectilinear partitioning problem. Journal of Algorithms 43(1), 138–152 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Golovin, D., Nagarajan, V., Singh, M.: Approximating the k-multicut problem. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 621–630 (2006)

    Google Scholar 

  18. Hochbaum, D.S.: Approximating covering and packing problems: Set cover, vertex cover, independent set, and related problems. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems, ch. 3, pp. 94–143. PWS Publishing Company (1997)

    Google Scholar 

  19. Hochbaum, D.S.: The t-vertex cover problem: Extending the half integrality framework with budget constraints. In: Jansen, K., Rolim, J.D.P. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 111–122. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  20. Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences 9(3), 256–278 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kearns, M.J.: The Computational Complexity of Machine Learning. MIT Press, Cambridge (1990)

    Google Scholar 

  22. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 767–775 (2002)

    Google Scholar 

  23. Könemann, J., Parekh, O., Segev, D.: A unified approach to approximating partial covering problems (2006), available at: http://www.math.tau.ac.il/~segevd

  24. Levin, A., Segev, D.: Partial multicuts in trees. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 320–333. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Mathematics 13, 383–390 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  26. Murty, K.G., Perin, C.: A 1-matching blossom type algorithm for edge covering problems. Networks 12, 379–391 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nagamochi, H.: An approximation for finding a smallest 2-edge-connected subgraph containing a specified spanning tree. Discrete Applied Mathematics 126(1), 83–113 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Padberg, M.W.: Covering, packing and knapsack problems. Annals of Discrete Mathematics 4, 265–287 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  29. Parekh, O.: Polyhedral Techniques for Graphic Covering Problems. PhD thesis, Department of Mathematical Sciences, Carnegie Mellon University (2002)

    Google Scholar 

  30. Plesník, J.: Constrained weighted matchings and edge coverings in graphs. Discrete Applied Mathematics 92(2–3), 229–241 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Räcke, H.: Minimizing congestion in general networks. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 43–52 (2002)

    Google Scholar 

  32. Slavík, P.: Improved performance of the greedy algorithm for partial cover. Information Processing Letters 64(5), 251–254 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Könemann, J., Parekh, O., Segev, D. (2006). A Unified Approach to Approximating Partial Covering Problems. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_43

Download citation

  • DOI: https://doi.org/10.1007/11841036_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38875-3

  • Online ISBN: 978-3-540-38876-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics