

Manlove, D.F. and Sng, C.T.S. (2006) Popular Matchings in the
Capacitated House Allocation Problem. Lecture Notes in Computer
Science 4168:pp. 492-503.

http://eprints.gla.ac.uk/3503/

Popular Matchings in the

Capacitated House Allocation Problem

David F. Manlove? and Colin T.S. Sng

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.
{davidm,sngts}@dcs.gla.ac.uk.

Abstract. We consider the problem of finding a popular matching in
the Capacitated House Allocation problem (CHA). An instance of CHA
involves a set of agents and a set of houses. Each agent has a preference
list in which a subset of houses are ranked in strict order, and each house
may be matched to a number of agents that must not exceed its capacity.
A matching M is popular if there is no other matching M ′ such that the
number of agents who prefer their allocation in M ′ to that in M exceeds
the number of agents who prefer their allocation in M to that in M ′.
Here, we give an O(

√
Cn1 + m) algorithm to determine if an instance

of CHA admits a popular matching, and if so, to find a largest such
matching, where C is the total capacity of the houses, n1 is the number
of agents and m is the total length of the agents’ preference lists. For the
case where preference lists may contain ties, we give an O((

√
C + n1)m)

algorithm for the analogous problem.

1 Introduction

An instance I of the Capacitated House Allocation problem (CHA) comprises a
bipartite graph G = (A, H, E), where A = {a1, a2, ..., an1

} is the set of agents,
H = {h1, h2, ..., hn2

} is the set of houses and E is the set of edges in G. We let
n = n1 +n2 and m = |E|. Each agent ai ∈ A ranks in strict order a subset of the
set of houses (the acceptable houses for ai) represented by his/her preference list.
Each house hj ∈ H has a capacity cj ≥ 1 which indicates the maximum number
of agents that may be matched to it. We assume that m ≥ max {n1, n2}, i.e. no
agent has an empty preference list and each house is acceptable to at least one
agent. We also assume that cj ≤ n1 for each hj ∈ H . Let C =

∑n2

j=1 cj denote
the sum of the capacities of the houses.

A matching M in I is a subset of E such that (i) each agent is matched to
at most one house in M , and (ii) each house hj ∈ H is matched to at most cj

agents in M . If an agent ai ∈ A is matched in M , we denote by M(ai) the house
that ai is matched to in M . We define M(hj) to be the set of agents matched
to hj in M (thus M(hj) could be empty). Given two matchings M and M ′ in I ,
we say that an agent ai prefers M ′ to M if either (i) ai is matched in M ′ and
unmatched in M , or (ii) ai is matched in both M ′ and M and prefers M ′(ai) to

? Supported by EPSRC grant GR/R84597/01 and RSE/Scottish Executive Personal
Research Fellowship.

(a) a1: h1 h2 h3 (b) a1: h1 h2

a2: h1 h2 h3 a2: h1

a3: h1 h2 h3

Fig. 1. Two instances of HA.

M(ai). Let P (M ′, M) denote the set of agents who prefer M ′ to M . Then, M ′

is more popular than M if |P (M ′, M)| > |P (M, M ′)|, i.e. the number of agents
who prefer M ′ to M is greater than the number of agents who prefer M to M ′.
Furthermore, a matching M in I is popular if there is no other matching M ′ in
I that is more popular than M .

CHA is an example of a bipartite matching problem with one-sided pref-
erences [1, 2, 7, 3]. These problems have applications in areas such as campus
housing allocation in US universities [1], hence the problem name; in assigning
probationary teachers to their first posts in Scotland; and in Amazon’s DVD
rental service. A variety of optimality criteria have been defined for such prob-
lems. Gärdenfors [6] first introduced the notion of a popular matching (also
known as a majority assignment) in the context of voting theory. Alternatively,
Pareto optimality [1, 2] is often regarded by economists as a fundamental prop-
erty to be satisfied. A matching M is Pareto optimal if there is no matching M ′

such that some agent prefers M ′ to M , and no agent prefers M to M ′. Finally,
a matching is rank maximal [7] if it assigns the maximum number of agents to
their first-choice houses, and subject to this, the maximum number of agents to
their second-choice houses, and so on. However, Pareto optimal matchings and
rank maximal matchings need not be popular.

Popular matchings were considered by Abraham et al. [3] in the context of the
House Allocation problem (HA) – the special case of CHA in which each house
has capacity 1. They gave an instance of HA in which no popular matching exists
(see Figure 1(a)) and also noted that popular matchings can have different sizes
(see Figure 1(b); in this HA instance the matchings M1 = {(a1, h1)} and M2 =
{(a1, h2), (a2, h1)} are both popular). Abraham et al. [3] described an O(n + m)
algorithm for finding a maximum cardinality popular matching (henceforth a
maximum popular matching) if one exists, given an instance of HA. They also
described an O(

√
nm) counterpart for the House Allocation problem with Ties

(HAT) – the generalisation of HA in which agents’ preferences may include ties.
Several other recent papers have also focused on popular matchings. Mah-

dian [8] gave some probabilistic results with respect to the existence of popular
matchings in a random instance of HA. Abraham and Kavitha [4] considered
popular matchings in a dynamic matching market in which agents and houses
can enter and leave the market, and showed that there exists a 2-step voting
path to compute a new popular matching from some initial matching after every
such change, provided some popular matching exists. Also Mestre [10] studied
a generalisation of the problem in which agents have a weight indicating their
priority, and the objective is to compute a weighted popular matching M (i.e.
there is no other matching M ′ such that the weighted majority of the agents
prefer M ′ to M .)

In this paper, we consider popular matchings in instances of CHA and CHAT,
where CHAT denotes the Capacitated House Allocation problem with Ties – the
generalisation of CHA in which agents’ preference lists may contain ties. Both
CHA and CHAT are natural generalisations of the one-one HA and HAT models
considered in [3] to the case where houses may have non-unitary capacity. We
extend the characterisations and algorithms for popular matchings from [3] to
these many-one settings. In particular, in Section 2, we develop a characterisation
of popular matchings in a CHA instance I , and then use it to construct an
O(

√
Cn1 + m) algorithm for finding a maximum popular matching in I if one

exists. In Section 3, we build a new characterisation of popular matchings in a
CHAT instance I , and then use it to construct an O((

√
C +n1)m) algorithm for

finding a maximum popular matching in I if one exists.
We finally remark that a straightforward solution to each of the problems of

finding a maximum popular matching, given an instance of CHA or CHAT, may
be to use “cloning”. Informally, this entails creating cj clones for each house hj ,
to obtain an instance C(I) of HAT (i.e. each house has capacity 1), and then
applying the HAT algorithm of [3] to C(I). However, we will show in Sections
2 and 3 that this method in general leads to slower algorithms than the direct
approach that we will be using in each case.

2 Popular matchings in CHA

Characterising popular matchings. Let I be an instance of CHA. For
each agent ai ∈ A, let f(ai) denote the first-ranked house on ai’s preference
list. Any such house hj is called an f -house. For each hj ∈ H , let f(hj) =
{ai ∈ A : f(ai) = hj} and fj = |f(hj)| (possibly fj = 0). Now let M be a match-
ing in I . We say that a house hj ∈ H is full if |M(hj)| = cj , and undersubscribed
if |M(hj)| < cj . We also create a unique last resort house l(ai) with capacity
1 for each agent ai ∈ A, and append l(ai) to ai’s preference list. The following
lemma is a vital first step in characterising popular matchings in I .

Lemma 1. Let M be a popular matching in I. Then for every f-house hj,
|M(hj) ∩ f(hj)| = min {cj , fj}.

Proof. We consider the following two cases.
– Case (i): Suppose fj ≤ cj . We will show that f(hj) ⊆ M(hj). For, suppose

not. Then choose any ar ∈ f(hj)\M(hj). We consider the subcases that (a) hj is
undersubscribed and (b) hj is full. In subcase (a), promote ar to hj to obtain a
more popular matching than M . In subcase (b), choose any as ∈ M(hj)\f(hj).
Let hk = f(as). Then hk 6= hj . If hk is undersubscribed, promote ar to hj and
promote as to hk to obtain a more popular matching than M . Otherwise, choose
any at ∈ M(hk). We then promote ar to hj , promote as to hk and demote at to
l(at) to obtain a more popular matching than M .

– Case (ii): Suppose fj > cj . If hj is undersubscribed, then f(hj) 6⊆ M(hj)
so there exists some ar ∈ f(hj)\M(hj) that we can promote to hj to obtain a
more popular matching as in Case (i)(a). Hence, hj is full. Now, suppose for a

contradiction that M(hj) 6⊆ f(hj). Then there exists some as ∈ M(hj)\f(hj). As
fj > cj , it follows that f(hj) 6⊆ M(hj) so there exists some ar ∈ f(hj)\M(hj).
The remainder of the argument follows Case (i)(b).

Hence the following properties hold for the new matching. If fj ≤ cj , then
f(hj) ⊆ M(hj). Otherwise, M(hj) ⊆ f(hj) and |M(hj)| = cj . Thus, the condi-
tion in the statement of the lemma is now satisfied. ut

For each agent ai, we next define s(ai) to be the most-preferred house hj

on ai’s preference list such that either (i) hj is a non-f -house, or (ii) hj is an
f -house such that hj 6= f(ai) and fj < cj . Note that s(ai) must exist in view
of l(ai). We refer to such a house hj as an s-house. We remark that the set of
f -houses need not be disjoint from the set of s-houses. It may be shown that
a popular matching M will only match an agent ai to either f(ai) or s(ai), as
indicated by the next two lemmas (see [9] for the proofs).

Lemma 2. Let M be a popular matching in I. Then no agent ai ∈ A can be
matched in M to a house between f(ai) and s(ai) on ai’s preference list.

Lemma 3. Let M be a popular matching in I. Then no agent ai ∈ A can be
matched in M to a house worse than s(ai) on ai’s preference list.

Let G = (A, H, E) be the underlying graph of I . We form a subgraph G′ of G
by letting G′ contain only two edges for each agent ai, that is, one to f(ai) and
the other to s(ai). We say that a matching M is agent-complete in a given graph
if it matches all agents in the graph. Clearly, in view of last resort houses, all
popular matchings must be agent-complete in G′. However, G′ need not admit
an agent-complete matching if s(ai) 6= l(ai) for some agent ai. In conjunction
with Lemmas 1-3, the graph G′ gives rise to the following characterisation of
popular matchings in I .

Theorem 1. A matching M is popular in I if and only if

1. for every f -house hj ,
(a) if fj ≤ cj , then f(hj) ⊆ M(hj);
(b) if fj > cj , then |M(hj)| = cj and M(hj) ⊆ f(hj).

2. M is an agent-complete matching in the reduced graph G′.

Proof. By Lemmas 1-3, any popular matching necessarily satisfies Conditions 1
and 2. We now show that these conditions are sufficient.

Let M by any matching satisfying Conditions 1 and 2 and suppose for a
contradiction that M ′ is a matching that is more popular than M . Let ai be any
agent that prefers M ′ to M and let hk = M ′(ai). Since M is an agent-complete
matching in G′, and since G′ contains only edges from ai to f(ai) and s(ai),
then M(ai) = s(ai). Hence either (i) hk = f(ai) or (ii) hk is an f -house such
that hk 6= f(ai) and fk ≥ ck, by definition of s(ai).

In Case (i), if fk < ck then by Condition 1(a), ai ∈ M(hk), a contradiction.
Hence in both Cases (i) and (ii), fk ≥ ck. In each of the cases that fk = ck and
fk > ck, it follows by Conditions 1(a) and 1(b) that |M(hk)| = ck and M(hk) ⊆

1. M := ∅;
2. for each f -house hj

3. c′

j := cj ;
4. if fj ≤ cj

5. for each ai ∈ f(hj)
6. M := M ∪ {(ai, hj)};
7. delete ai and its incident edges from G′;
8. c′

j := cj − fj ;
9. remove all isolated and full houses, and their incident edges, from G′;
10. compute a maximum matching M ′ in G′ using capacities c′

j ;
11. if M ′ is not agent-complete in G′

12. output “no popular matching exists”
13. else

14. M := M ∪ M ′;
15. for each ai ∈ A

16. hj := f(ai);
17. if fj > cj and |M(hj)| < cj and hj 6= M(ai)
18. promote ai from M(ai) to hj in M ;

Fig. 2. Algorithm Popular-CHA for finding a popular matching in CHA.

f(hk). Since hk is full in M , it follows that |M(hk)\M ′(hk)| ≥ |M ′(hk)\M(hk)|.
Hence for every ai who prefers M ′(ai) = hk to M(ai), there is a unique aj ∈
M(hk)\M ′(hk). But as aj ∈ M(hk), it follows that hk = f(aj). Hence aj prefers
M(aj) to M ′(aj). Therefore, M is popular in I . ut

Finding a popular matching. Theorem 1 leads to Algorithm Popular-CHA
for finding a popular matching in a CHA instance I , or reporting that none exists,
as shown in Figure 2. The algorithm begins by using a pre-processing step (lines
2-9) on G′ that matches agents to their first-choice house hj whenever fj ≤ cj ,
so as to satisfy Condition 1(a) of Theorem 1.

Our next step computes a maximum cardinality matching M ′ (henceforth a
maximum matching) in G′, according to the adjusted house capacities c′j that are
defined following pre-processing. The subgraph G′ can be viewed as an instance
of the Upper Degree-Constrained Subgraph problem (UDCS) [5]. (An instance
of UDCS is essentially the same as an instance of CHA, except that agents
have no explicit preferences in the UDCS case; the definition of a matching is
unchanged.) We use Gabow’s algorithm [5] to compute M ′ in G′ and then test
whether M ′ is agent-complete. The pre-allocations are then added to M ′ to give
M . As a last step, we ensure that M also meets Condition 1(b) of Theorem 1.
For, suppose that hj ∈ H is an f -house such that fj > cj . Then by definition, hj

cannot be an s-house. Thus if ak ∈ M(hj) prior to the third for loop, it follows
that ak ∈ f(hj). At this stage, if hj is undersubscribed in M , we repeatedly
promote any agent ai ∈ f(hj)\M(hj) from M(ai) (note that M(ai) must be
s(ai) and hence cannot be an f -house hl such that fl > cl) to hj until hj is full,
ensuring that M(hj) ⊆ f(hj).

It is clear that the reduced graph G′ of G can be constructed in O(m) time.

The graph G′ has O(n1) edges since each agent has degree 2 in G′. Clearly each
of the pre- and post-processing steps involving the three for loop phases takes
O(n1 + n2) time. The complexity of Gabow’s algorithm [5] for computing M ′ in
G′ is O(

√
Cn1). Hence we obtain the following result concerning the complexity

of Algorithm Popular-CHA.

Lemma 4. Given an instance of CHA, we can find a popular matching, or
determine that none exists, in O(

√
Cn1 + m) time.

It remains to consider the problem of finding a maximum popular matching
in I . We begin by dividing the set of all agents into disjoint sets. Let A1 be the
set of all agents ai with s(ai) = l(ai), and let A2 = A − A1. We aim to find a
matching M that satisfies the conditions of Theorem 1, and that minimises the
number of A1-agents who are matched to their last resort house.

We begin by constructing G′, and carrying out the pre-processing step in
lines 2-9 of Algorithm Popular-CHA on all agents in A1 ∪ A2. We then try
to find a maximum matching M ′ in G′ that only involves the A2-agents that
remain after pre-processing and their incident edges. If M ′ is not an agent-
complete matching of the agents in A2 that remain after pre-processing, then
G admits no popular matching by Theorem 1. Otherwise, we remove all edges
in G′ that are incident to a last resort house, and try to match A1-agents to
their first-choice houses. At each step, we try to match an additional A1-agent
to his/her first-choice house by finding an augmenting path with respect to M ′

using Gabow’s algorithm for UDCS [5], so that we have a maximum matching
of agents in A1 ∪ A2 in G′ at the end of this process. If any A1-agent remains
unmatched, we simply assign him/her to his/her last resort house, to obtain an
agent-complete matching in G′. We also ensure that Condition 1(b) of Theorem
1 is met by executing the third for loop in Algorithm Popular-CHA. Clearly
then, the matching so obtained, together with the pre-assignments from earlier,
is a maximum popular matching, giving the following theorem.

Theorem 2. Given an instance of CHA, we can find a maximum popular match-
ing, or determine that none exists, in O(

√
Cn1 + m) time.

An alternative approach to our algorithm would be to use cloning. Given an
instance I of CHA, we may obtain an instance J of HAT by creating cj clones
h1

j , h
2
j , ..., h

cj

j of each house hj in I , where each clone has a capacity of 1. In
addition, we replace each occurrence of hj in a given agent’s preference list with
the sequence h1

j , h
2
j , ..., h

cj

j , the elements of which are listed in a single tie at the

point where hj appears. We can then apply the O(
√

nm) algorithm for HAT
given by [3] to J in order to find a maximum popular matching in I .

We now compare the worst-case complexity of the above cloning approach
with that of our algorithm. The underlying graph GJ of J contains n′ = n1 + C
nodes. Let cmin = min{cj : hj ∈ H}, and for ai ∈ A, let Ai denote the
set of acceptable houses for ai. Then the number of edges in GJ is m′ =∑

ai∈A

∑
hj∈Ai

cj ≥ mcmin. Hence the complexity of applying the algorithm

given by [3] to J is Ω(
√

Cmcmin). Recall that the complexity of Algorithm

Popular-CHA is O(
√

Cn1 +m). It follows that the cloning method is slower by a
factor of Ω(

√
Ccmin) or Ω(mcmin/n1) (note that m ≥ n1 and cmin ≥ 1) accord-

ing as
√

Cn1 ≤ m or
√

Cn1 > m respectively. In the case that cmin = Ω(n1), our

approach offers an improvement by a factor of Ω(n
3/2
1 n

1/2
2) or Ω(m) respectively.

3 Popular matchings in CHAT

In this section, we generalise the characterisation of popular matchings together
with Algorithm Popular-CHA as given in the previous section to the case that
I is an instance of CHAT.

Characterising popular matchings. Let M be a popular matching in I .
For each agent ai ∈ A, let f(ai) denote the set of first-ranked houses on ai’s
preference list (clearly it is possible that |f(ai)| > 1 in view of ties in the pref-
erence lists). We refer to all such houses hj as f-houses and we let f(hj) =
{ai ∈ A : hj ∈ f(ai)}. Let G = (A, H, E) be the underlying graph of I . Define
E1 = {(ai, hj) : ai ∈ A ∧ hj ∈ f(ai)} to be the set of first-choice edges. We de-
fine the first-choice graph of G as G1 = (A, H, E1). For instances with strict
preference lists, Lemma 1 implies that M ∩ E1 is a maximum matching in G1.
As the next lemma indicates (see [9] for the proof), this latter condition also
extends to the CHAT case.

Lemma 5. Let M be a popular matching in I. Then M ∩ E1 is a maximum
matching in G1.

As Lemma 1 no longer holds in general in a CHAT instance, we work towards
a new definition of s-houses by using some concepts from the theory of bipartite
matching. Let M be a maximum matching in some bipartite graph G where
all nodes have capacity 1. According to the Edmonds-Gallai Decomposition (see
[11]), then the nodes of G can be partitioned into three disjoint sets: E , O and U .
Nodes in E , O and U are called even, odd, and unreachable respectively. A node
v is even (odd) if there exists an alternating path of even (odd) length from an
unmatched node in G to v. If no such alternating path exists, v is unreachable.
Some fundamental properties of this node labelling (henceforth referred to as
the EOU labelling) in relation to a maximum matching in G are summarised in
Lemma 3.2 of [3].

Our aim is to obtain an EOU labelling of G1 relative to a maximum matching
M1 of G1 (as obtained by Gabow’s algorithm [5], for example). However Lemma
3.2 of [3] applies directly only to the case where each node in the given bipartite
graph has capacity 1. We obtain an EOU labelling of nodes in G1 by a cloning
process, as follows. The cloned graph C(G1) can be constructed from G1 by
replacing every house hj ∈ H with the clones h1

j , h
2
j , . . . , h

cj

j . We then divide the
capacity of each house among its clones by allowing each clone to have capacity 1.
In addition, if (ai, hj) ∈ G1, then we add (ai, h

k
j) ∈ C(G1) for all k (1 ≤ k ≤ cj).

We then adapt the maximum matching M1 in G1 to obtain a matching C(M1)
in C(G1), as follows. If a house hj in G1 is matched to xj agents ai1 , ...aixj

in

M1, then we add (aik
, hk

j) to C(M1) for 1 ≤ k ≤ xj , so that |C(M1)| = |M1| and
C(M1) is a maximum matching in C(G1).

We next use C(M1) and C(G1) to obtain an EOU labelling of the nodes in
C(G1), and hence G1. Clearly, such a labelling in C(G1) is useful only if it can
give a well-defined characterisation of EOU labels in G1. Crucial to this is the
need for the clones corresponding to each house hj ∈ H to have the same EOU
label in C(G1), as stated by the next lemma (see [9] for the proof).

Lemma 6. Let G1 be the first-choice graph in I and let M1 be a maximum
matching in G1. Define the cloned graph C(G1) and its corresponding maximum
matching C(M1) as above. Then, given any house hj ∈ H, any two clones of hj

in C(G1) have the same EOU label.

We now use Lemma 6 to obtain an EOU labelling of the nodes in G1. Clearly,
in view of Lemma 6, a well-defined EOU labelling of hj ∈ H can be obtained by
letting hj inherit its EOU label from those of its clones. That is, we say that hj

is even, odd or unreachable in G1 if its clones are even, odd or unreachable in
C(G1) respectively. It is immediate that each agent can inherit its EOU label in
G1 from its corresponding label in C(G1). The next result is a consequence of
Lemma 6 (see [9] for the proof).

Lemma 7. Let M be a popular matching in I. Then every odd or unreachable
house hj ∈ H satisfies |M(hj)| = cj and M(hj) ⊆ f(hj).

Lemmas 6 and 7 give us the following analogue of Lemma 3.2 from [3] for CHAT.

Lemma 8. Let G1 be the first-choice graph in I and let M1 be a maximum
matching in G1. Define E, O and U to be the node sets corresponding to even,
odd and unreachable nodes in an EOU labelling of G1 with respect to M1. Then:

(a) The sets E, O and U are pairwise disjoint. Every maximum matching in G1

partitions the nodes into the same sets of even, odd and unreachable nodes.
(b) Every maximum matching M in G1 satisfies the following properties:

(i) every odd agent is matched to an even house in M ;
(ii) every odd house is full in M and matched only to even agents in M ;
(iii) every unreachable agent is matched to an unreachable house in M ;
(iv) every unreachable house is full in M and matched only to unreachable

agents in M ;
(v) |M | = |OA| + |UA| +

∑
hj∈OH

cj , where UA is the set of unreachable
agents, OA is the set of odd agents and OH is the set of odd houses.

(c) No maximum matching in G1 contains an edge between two nodes in O or
a node in O with a node in U . There is no edge in G1 connecting a node in
E with a node in U , or between two nodes of E.

We are now in a position to define s(ai), the set of houses such that, in
a popular matching M , if ai ∈ A is matched in M and M(ai) /∈ f(ai), then
M(ai) ∈ s(ai). We will ensure that any odd or unreachable house hj is not a
member of s(ai), since |M(hj)| = cj and M(hj) ⊆ f(hj) by Lemma 7. Hence,

we define s(ai) to be the set of highest-ranking houses in ai’s preference list that
are even in G1. Any such house is called an s-house. Clearly, it is possible that
|s(ai)| > 1, however, ai is indifferent between all houses in s(ai). Furthermore,
s(ai) 6= ∅ due to the existence of last resort houses which are of degree 0 in G1

(and thus even). However, f(ai) and s(ai) need not be disjoint. It turns out that
Lemmas 2 and 3 also extend to CHAT as established by the following lemmas
(see [9] for the proofs).

Lemma 9. Let M be a popular matching in I. Then no agent ai ∈ A can be
matched in M to a house between f(ai) and s(ai) on ai’s preference list.

Lemma 10. Let M be a popular matching in I. Then no agent ai ∈ A can be
matched in M to a house worse than s(ai) on ai’s preference list.

As was the case with CHA, we can also define a subgraph G′ for the CHAT
instance I by this time letting G′ contain only edges from each agent ai to houses
in f(ai) ∪ s(ai). Clearly, all popular matchings must be agent-complete in G′ in
view of last resort houses. However, an agent-complete matching need not exist
if s(ai) 6= {l(ai)} for some agent ai. Lemmas 5, 9 and 10 give rise to the following
characterisation of popular matchings in I .

Theorem 3. A matching M is popular in I if and only if

1. M ∩ E1 is a maximum matching in G1, and
2. M is an agent-complete matching in the subgraph G′.

Proof. By Lemmas 5, 9 and 10, any popular matching necessarily satisfies Con-
ditions 1 and 2. We now show that these conditions are sufficient.

Let M be any matching satisfying Conditions 1 and 2. Suppose for a contra-
diction that M ′ is a matching that is more popular than M . Let ai be any agent
that prefers M ′ to M . Since ai prefers M ′(ai) to M(ai), M is an agent-complete
matching in G′, and G′ only contains edges from ai to f(ai) ∪ s(ai), it follows
that M(ai) ∈ s(ai), and f(ai) and s(ai) are disjoint. Hence, M ′(ai) must be an
odd or unreachable house in G1, as M(ai) is the highest-ranked even house in
ai’s preference list.

Let hj1 = M ′(ai). Since hj1 is odd or unreachable, it follows by Condition
1 and Lemma 8(b) that |M(hj1)| = cj1 and M(hj1) ⊆ f(hj1). Now since ai ∈
M ′(hj1)\M(hj1), there exists a distinct agent ak1

∈ M(hj1)\M ′(hj1). If ak1
is

unmatched in M ′ or M ′(ak1
) /∈ f(ak1

), then ak1
prefers M to M ′. Otherwise,

suppose M ′(ak1
) ∈ f(ak1

). Let hj2 = M ′(ak1
). Clearly, ak1

is even or unreachable
so that hj2 must be odd or unreachable. It follows by Condition 1 and Lemma
8(b) that |M(hj2)| = cj2 and M(hj2) ⊆ f(hj2). Hence, there exists an agent
ak2

6= ak1
such that ak2

∈ M(hj2)\M ′(hj2) and hj2 ∈ f(ak2
). If ak2

is unmatched
in M ′ or M ′(ak2

) /∈ f(ak2
), then ak2

prefers M to M ′. Otherwise, suppose
that M ′(ak2

) ∈ f(ak2
). Let hj3 = M ′(ak2

). Then there exists an agent ak3
∈

M(hj3)\M ′(hj3) by a similar argument for ak2
. Note that possibly hj3 = hj1 , but

we must be able to choose ak3
6= ak1

, for otherwise |M ′(hj1)| > |M(hj1)|, which
is a contradiction since |M(hj1)| = cj1 . Thus, ak3

is a distinct agent, so that

1. Build subgraph G1=(A, H,E1), where E1={(ai, hj) : ai ∈ A ∧ hj ∈ f(ai)}.
2. Compute a maximum matching M1 of first-choice edges in G1.
3. Obtain an EOU labelling of G1 using C(G1) and C(M1).
4. Build subgraph G′=(A,H, E′), where E′={(ai, hj) : ai ∈ A ∧ hj ∈ f(ai) ∪ s(ai)}.
5. Delete all edges in G′ connecting two odd nodes, or connecting an odd node with

an unreachable node. (This step does not delete an edge of M1.)
6. Find a maximum matching M in the reduced graph G′ by augmenting M1.
7. If M is not agent-complete in G′, then output “No popular matching exists”,

otherwise return M as a popular matching in I.

Fig. 3. Algorithm Popular-CHAT for finding a popular matching in CHAT.

we can repeat the above argument to identify an alternating path P in which
houses need not be distinct, but agents are distinct. Clearly, P must terminate
at some agent akr

as the number of agents are finite. Furthermore, it must be
the case that akr

is unmatched in M ′ or M ′(akr
) /∈ f(akr

) so that for every ai

that prefers M ′ to M , there must exist a distinct akr
that prefers M to M ′.

Finally, we note the uniqueness of akr
. If there exists another agent a′

i who
prefers M ′ to M , then we can build another alternating path – it is possible that
some of the houses are those already used in previous alternating paths such as
P . However, it must be the case (from our argument that ak3

is a distinct agent)
that we are always able to identify distinct agents not already used in previous
alternating paths, as each house on the path is odd or unreachable, and thus full
in M . Hence, M is popular in I . ut

Finding a popular matching. Theorem 3 leads to Algorithm Popular-CHAT
for finding a popular matching in I of CHAT or reporting that none exists, as
shown in Figure 3. The next lemma is an important step in establishing the
correctness of the algorithm.

Lemma 11. Algorithm Popular-CHAT constructs a matching M such that M∩
E1 is a maximum matching of G1.

Proof. (Sketch – see [9] for the full proof.) Firstly, we claim that only first-choice
edges are incident to odd nodes and unreachable houses in G′ at the end of Step
4, using our definition of s-houses and Lemma 8(b). Define a second-choice edge
as belonging to the edge set {(ai, hj) ∈ E′ : hj ∈ s(ai)∧ s(ai) 6⊆ f(ai)}. By the
claim, and by Lemma 8(c), the only first-choice edges in G′ after Step 5 are those
between (i) odd agents and even houses, (ii) even agents and odd houses, and
(iii) unreachable agents and unreachable houses; the only second-choice edges
are those between (i) even agents and even houses, and (ii) unreachable agents
and even houses. Moreover no edge of M1 is deleted by Step 5 of the algorithm.
It follows that in Step 6, odd agents must remained matched to their first-choice
houses, and by an argument involving alternating paths, unreachable agents
cannot become worse off. Only even agents may become worse off, so that at
least |OA|+ |UA|+

∑
hj∈OH

cj first-choice edges are matched in the matching M .

It thus follows by Lemma 8(b) that M ∩ E1 is a maximum matching of G1. ut

Hence if Algorithm Popular-CHAT returns a matching M , then M is both
an agent-complete matching in G′ and M ∩ E1 is a maximum matching of G1

by Lemma 11. Hence M is a popular matching in I by Theorem 3.
We now consider the complexity of Algorithm Popular-CHAT. Let F be

the number of first-choice edges in G, and let cmax = max{cj : hj ∈ H};
then cmax ≤ n1. Clearly G1 can be constructed in O(F + n2) time. We use
Gabow’s algorithm [5] to compute a maximum matching M1 in G1 in O(

√
CF)

time. We next use C(M1) in C(G1) to compute an EOU labelling of G1. The
total number of edges in C(G1) is O(cmaxF). We first use a pre-processing
step to label each unmatched agent and each undersubscribed house as even.
Clearly, this step takes O(n) time. Next, breadth-first search may be used on
C(G1) to search for alternating paths with respect to C(M1), building up odd
or even labels for every node encountered. This step labels all odd and even
(matched) agents, and all odd and even (full) houses and takes O(cmaxF + n2)
time. Any remaining unlabelled nodes must be unreachable and we can directly
label these nodes in G1 in O(n) time. Thus, the total time complexity of this
step is O(cmaxF + n2) = O(n1F + n2). The EOU labelling of G1 is then used
to construct G′ and to delete certain edges from G′ at Steps 4 and 5 of the
algorithm, both of which take O(m) time overall.

Finally, we use Gabow’s algorithm again to obtain the maximum matching
M in G′ in O(

√
C(F +S)) time, where S is the number of second-choice edges in

G′. The following result gives the overall run-time of Algorithm Popular-CHAT.

Lemma 12. Given an instance of CHAT, we can find a popular matching, or
determine that none exists, in O((

√
C + n1)m) time.

It now remains to consider the problem of finding a maximum popular match-
ing in I . The aim is to find a matching that satisfies the conditions of Theorem
3 and that minimises the number of agents who are matched to their last re-
sort houses. We begin by firstly using Algorithm Popular-CHAT to compute a
popular matching M in I , assuming such a matching exists. Then M ∩ E1 is a
maximum matching in G1. We remove all edges in G′ (and thus from M) that
are incident to a last resort house. Clearly, M still satisfies the property that
M ∩ E1 is a maximum matching in G1, but M need not be maximum in G′ if
agents become unmatched as a result of the edge removals. Thus, we obtain a
new maximum matching M ′ from M by using Gabow’s algorithm on G′ again.
If M ′ is not agent-complete in G′, we simply assign any agent who remains un-
matched in M ′ to their last resort house to obtain an agent-complete matching.
Using an argument similar to that in the proof of Lemma 11, it follows that
M ′∩E1 is a maximum matching of G1. Thus, M ′ is a maximum popular match-
ing in I . Clearly the overall complexity of this approach is as for Algorithm
Popular-CHAT, giving the following result.

Theorem 4. Given an instance of CHAT, we can find a maximum popular
matching, or report that no such matching exists, in O((

√
C + n1)m) time.

We may compare the complexity of our direct approach for CHAT to that
obtained using cloning on I together with the algorithm of [3] on the cloned

instance of I . As in Section 2, the latter approach takes Ω(
√

Cm′ + C) time,
where m′ =

∑
ai∈A

∑
hj∈Ai

cj . The complexity of Algorithm Popular-CHAT may

be rewritten as O(
√

Cm + mF + C), where mF =
∑

ai∈A

∑
hj∈f(ai)

cj . Clearly

mF ≤ m′. Since m′ ≥ mcmin, the first term in the complexity function of the
cloning method is slower than the first term in that of Algorithm Popular-CHAT
by a factor of Ω(cmin), which is Ω(n1) if cj = Ω(n1) for each hj ∈ H .

4 Concluding remarks

We conclude with the following open problem. Suppose that we are presented
with an instance J of CHA or CHAT in which the houses have preferences over
the agents. Real-life applications of such a problem exist in many centralised
matching markets such as the National Resident Marketing Program (NRMP)
[12] and counterpart schemes in Canada and Scotland. Then, what is the com-
plexity of finding a maximum popular matching in J if one exists?

Acknowledgement

We would like to thank Rob Irving for helpful discussions concerning this paper.

References

1. A. Abdulkadiroǧlu and T. Sönmez. Random serial dictatorship and the core from
random endowments in house allocation problems. Econometrica, 66(3):689–701,
1998.

2. D.J. Abraham, K. Cechlárová, D.F. Manlove, and K. Mehlhorn. Pareto optimality
in house allocation problems. In Proceedings of ISAAC 2004: the 15th Annual

International Symposium on Algorithms and Computation, volume 3341 of Lecture

Notes in Computer Science, pages 3–15. Springer, 2004.
3. D.J. Abraham, R.W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings.

In Proceedings of SODA ’05: the 16th ACM-SIAM Symposium on Discrete Algo-

rithms, pages 424–432. ACM-SIAM, 2005.
4. D.J. Abraham and T. Kavitha. Dynamic matching markets and voting paths. In

Proceedings of SWAT 2006: the 10th Scandinavian Workshop on Algorithm Theory,
volume 4059 of Lecture Notes in Computer Science, pages 65–76. Springer, 2006.

5. H.N. Gabow. An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. In Proceedings of STOC ’83: the 15th Annual

ACM Symposium on Theory of Computing, pages 448–456. ACM, 1983.
6. P. Gärdenfors. Match making: assignments based on bilateral preferences. Be-

havioural Science, 20:166–173, 1975.
7. R.W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. Rank-maximal

matchings. In Proceedings of SODA ’04: the 15th ACM-SIAM Symposium on

Discrete Algorithms, pages 68–75. ACM-SIAM, 2004.
8. M. Mahdian. Random popular matchings. In Proceedings of EC ’06: the 7th ACM

Conference on Electronic Commerce, pages 238–242. ACM, 2006.

9. D.F. Manlove and C.T.S. Sng. Popular matchings in the Capacitated House Alloca-
tion problem. Technical Report TR-2006-222, University of Glasgow, Department
of Computing Science, 2006.

10. J. Mestre. Weighted popular matchings. In Proceedings of ICALP ’06: the 33rd

International Colloquium on Automata, Languages and Programming, volume 4051
of Lecture Notes in Computer Science, pages 715–726. Springer, 2006.

11. W.R. Pulleyblank. Matchings and extensions. In R.L. Graham, M. Grotschel,
and L. Lovasz, editors, Handbook of Combinatorics, volume 1, chapter 3, pages
179–232. North-Holland, 1995.

12. A.E. Roth. The evolution of the labor market for medical interns and residents: a
case study in game theory. Journal of Political Economy, 92(6):991–1016, 1984.

	citation_temp.pdf
	http://eprints.gla.ac.uk/3503/

