Abstract
In this paper we give a fully dynamic data structure to maintain the connectivity of the intersection graph of n axis-parallel rectangles. The amortized update time (insertion and deletion of rectangles) is O(n 10/11polylog n) and the query time (deciding whether two given rectangles are connected) is O(1). It slightly improves the update time (O(n 0.94)) of the previous method while drastically reducing the query time (near O(n 1/3)). Our method does not use fast matrix multiplication results and supports a wider range of queries.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Advances in Discrete and Computational Geometry, pp. 1–56. AMS Press (1999)
Chan, T.M.: Dynamic subgraph connectivity with geometric applications. In: Proc. 34th ACM Sympos. on Theory of Comput., pp. 7–13 (2002)
Chan, T.M.: Semi-online maintenance of geometric optima and measures. SIAM J. Comput. 32, 700–716 (2003)
Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387–421 (1989)
Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symbolic Comput. 9, 251–280 (1990)
Edelsbrunner, H., Maurer, H.A.: On the intersection of orthogonal objects. Inform. Process. Lett. 13, 177–181 (1981)
Fredman, M., Henzinger, M.: Lower bounds for fully dynamic connectivity problems in graphs. Algorithmica 22, 351–362 (1998)
Gupta, P., Janardan, R., Smid, M.: Computational geometry: generalized intersection searching. In: Handbook of Data Structures and Applications, pp. 64–1–64–17. Chapman & Hall/CRC, Boca Raton (2005)
Henzinger, M.R., King, V.: Randomized dynamic graph algorithms with polylogarithmic time per operation. J. ACM 46, 76–103 (2000)
Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48, 723–760 (2001)
Imai, H., Asano, T.: Finding the connected components and a maximum clique of an intersection graph of rectangles in the plane. J. Algorithms 4(4), 310–323 (1983)
Matoušek, J.: Lectures on Discrete Geometry. Springer, Heidelberg (2002)
Pǎtraşcu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe model. SIAM J. Comput. 35(4), 932–963 (2006)
Thorup, M.: Decremental dynamic connectivity. J. Algorithms 33(2), 229–243 (1999)
Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: Proc. 32nd ACM Sympos. on Theory of Comput., pp. 343–350 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Afshani, P., Chan, T.M. (2006). Dynamic Connectivity for Axis-Parallel Rectangles. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_5
Download citation
DOI: https://doi.org/10.1007/11841036_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38875-3
Online ISBN: 978-3-540-38876-0
eBook Packages: Computer ScienceComputer Science (R0)