Abstract
We consider the problem of finding shortest paths in a graph with independent randomly distributed edge lengths. Our goal is to maximize the probability that the path length does not exceed a given threshold value (deadline). We give a surprising exact n Θ(logn) algorithm for the case of normally distributed edge lengths, which is based on quasi-convex maximization. We then prove average and smoothed polynomial bounds for this algorithm, which also translate to average and smoothed bounds for the parametric shortest path problem, and extend to a more general non-convex optimization setting. We also consider a number other edge length distributions, giving a range of exact and approximation schemes.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ackermann, H., Newman, A., Röglin, H., Vöcking, B.: Decision making based on approximate and smoothed pareto curves. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 675–684. Springer, Heidelberg (2005)
Bertsekas, D.: Dynamic Programming and Optimal Control, 2nd edn., vol. II. Athena Scientific, Belmont (2001)
Boyan, J., Mitzenmacher, M.: Improved results for route planning in stochastic transportation networks. In: Proc. of Symposium of Discrete Algorithms (2001)
Carstensen, P.: The complexity of some problems in parametric linear and combinatorial programming. Ph.D. Thesis, Mathematics Dept., U. of Michigan, Ann Arbor, Mich. (1983)
Dean, B., Goemans, M., Vondrak, J.: Approximating the stochastic knapsack: The benefit of adaptivity. In: Proceedings of FOCS, pp. 208–217 (2004)
Fan, Y., Kalaba, R., Moore, I.J.E.: Arriving on time. Journal of Optimization Theory and Applications (forthcoming)
Goel, A., Indyk, P.: Stochastic load balancing and related problems. In: Proceedings of the 40th Symposium on Foundations of Computer Science (1999)
Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Kluwer Academic Publishers, Dordrecht (2000)
Karger, D., Motwani, R., Ramkumar, G.D.S.: On approximating the longest path in a graph. Algorithmica 18, 82–98 (1997)
Kelner, J.A., Spielman, D.A.: A randomized polynomial-time simplex algorithm for linear programming. Electronic Colloquium on Computational Complexity (156) (2005)
Kleinberg, J., Rabani, Y., Tardos, É.: Allocating bandwidth for bursty connections. SIAM Journal on Computing 30(1), 191–217 (2000)
Loui, R.P.: Optimal paths in graphs with stochastic or multidimentional weights. Communications of the ACM 26, 670–676 (1983)
Miller-Hooks, E.D., Mahmassani, H.S.: Least expected time paths in stochastic, time-varying transportation networks. Transportation Science 34, 198–215 (2000)
Mirchandani, P., Soroush, H.: Optimal paths in probabilistic networks: A case with temporary preferences. Computers and Operations Research 12(4), 365–381 (1985)
Mote, J., Murthy, I., Olson, D.: A parametric approach to solving bicriterion shortest path problems. European Journal of Operational Research 53, 81–92 (1991)
Mulmuley, K., Shah, P.: A lower bound for the shortest path problem. Journal of Computer and System Sciences 63(2), 253–267 (2001)
Nikolova, E., Brand, M., Karger, D.R.: Optimal route planning under uncertainty. In: Proceedings of International Conference on Automated Planning and Scheduling (2006)
Nikolova, E., Kelner, J.A.: On the hardness and smoothed complexity of low-rank quasi-concave minimization (May 2006) (manuscript)
Pallottino, S., Scutella, M.G.: Shortest path algorithms in transportation models: Classical and innovative aspects. Technical Report TR-97-06, Universita di Pisa Dipartimento di Informatica, Pisa, Italy (1997)
Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theoretical Computer Science 84, 127–150 (1991)
Papadimitriou, C.H., Yannakakis, M.: On limited nondeterminism and the complexity of the V-C dimension. Journal of Computer and System Sciences 53(2), 161–170 (1996)
Polychronopoulos, G.H., Tsitsiklis, J.N.: Stochastic shortest path problems with recourse. Networks 27(2), 133–143 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nikolova, E., Kelner, J.A., Brand, M., Mitzenmacher, M. (2006). Stochastic Shortest Paths Via Quasi-convex Maximization. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_50
Download citation
DOI: https://doi.org/10.1007/11841036_50
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38875-3
Online ISBN: 978-3-540-38876-0
eBook Packages: Computer ScienceComputer Science (R0)