Skip to main content

Approximate k-Steiner Forests Via the Lagrangian Relaxation Technique with Internal Preprocessing

  • Conference paper
Algorithms – ESA 2006 (ESA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4168))

Included in the following conference series:

  • 3184 Accesses

Abstract

An instance of the k-Steiner forest problem consists of an undirected graph G = (V,E), the edges of which are associated with non-negative costs, and a collection \({\cal D} = \{ (s_i, t_i) : 1 \leq i \leq d \}\) of distinct pairs of vertices, interchangeably referred to as demands. We say that a forest \({\cal F} \subseteq G\) connects a demand (s i , t i ) when it contains an s i -t i path. Given a requirement parameter \(k \leq |{\cal D}|\), the goal is to find a minimum cost forest that connects at least k demands in \({\cal D}\). This problem has recently been studied by Hajiaghayi and Jain [SODA ’06], whose main contribution in this context was to relate the inapproximability of k-Steiner forest to that of the dense k -subgraph problem. However, Hajiaghayi and Jain did not provide any algorithmic result for the respective settings, and posed this objective as an important direction for future research.

In this paper, we present the first non-trivial approximation algorithm for the k-Steiner forest problem, which is based on a novel extension of the Lagrangian relaxation technique. Specifically, our algorithm constructs a feasible forest whose cost is within a factor of \(O( {\rm min} \{ n^{ 2/3 }, \sqrt{d} \} \cdot \log d )\) of optimal, where n is the number of vertices in the input graph and d is the number of demands.

Due to space limitations, some proofs and technical details are omitted from this extended abstract. We refer the reader to the full version of this paper (currently available online at http://www.math.tau.ac.il/~segevd), in which all missing information is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, A., Klein, P.N., Ravi, R.: When trees collide: An approximation algorithm for the generalized Steiner problem on networks. SIAM Journal on Computing 24(3), 440–456 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arora, S., Karakostas, G.: A 2 + ε approximation algorithm for the k-MST problem. In: 11th SODA, pp. 754–759 (2000)

    Google Scholar 

  3. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. Journal of the ACM 45(3), 501–555 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense subgraph. Journal of Algorithms 34(2), 203–221 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bienstock, D., Goemans, M.X., Simchi-Levi, D., Williamson, D.P.: A note on the prize collecting traveling salesman problem. Mathematical Programming 59, 413–420 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blum, A., Ravi, R., Vempala, S.: A constant-factor approximation algorithm for the k-MST problem. Journal of Computer and System Sciences 58(1), 101–108 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29(3), 410–421 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feige, U., Langberg, M.: Approximation algorithms for maximization problems arising in graph partitioning. Journal of Algorithms 41(2), 174–211 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Garg, N.: A 3-approximation for the minimum tree spanning k vertices. In: 37th FOCS, pp. 302–309 (1996)

    Google Scholar 

  10. Garg, N.: Saving an epsilon: A 2-approximation for the k-MST problem in graphs. In: 37th STOC, pp. 396–402 (2005)

    Google Scholar 

  11. Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM Journal on Computing 24(2), 296–317 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hajiaghayi, M., Jain, K.: The prize-collecting generalized Steiner tree problem via a new approach of primal-dual schema. In: 17th SODA, pp. 631–640 (2006)

    Google Scholar 

  13. Han, Q., Ye, Y., Zhang, J.: An improved rounding method and semidefinite programming relaxation for graph partition. Mathematical Programming 92(3), 509–535 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Levin, A., Segev, D.: Partial multicuts in trees. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 320–333. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. Journal of Computer and System Sciences 43(3), 425–440 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ravi, R., Goemans, M.X.: The constrained minimum spanning tree problem (extended abstract). In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 66–75. Springer, Heidelberg (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Segev, D., Segev, G. (2006). Approximate k-Steiner Forests Via the Lagrangian Relaxation Technique with Internal Preprocessing. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_54

Download citation

  • DOI: https://doi.org/10.1007/11841036_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38875-3

  • Online ISBN: 978-3-540-38876-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics