Skip to main content

Out-of-Order Event Processing in Kinetic Data Structures

  • Conference paper
Algorithms – ESA 2006 (ESA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4168))

Included in the following conference series:

  • 3143 Accesses

Abstract

We study the problem of designing kinetic data structures (KDS’s for short) when event times cannot be computed exactly and events may be processed in a wrong order. In traditional KDS’s this can lead to major inconsistencies from which the KDS cannot recover. We present more robust KDS’s for the maintenance of two fundamental structures, kinetic sorting and tournament trees, which overcome the difficulty by employing a refined event scheduling and processing technique. We prove that the new event scheduling mechanism leads to a KDS that is correct except for finitely many short time intervals. We analyze the maximum delay of events and the maximum error in the structure, and we experimentally compare our approach to the standard event scheduling mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, P.K., Arge, L., Erickson, J.: Indexing moving points. J. Comput. Syst. Sci. 66, 207–243 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agarwal, P.K., Gao, J., Guibas, L.J.: Kinetic medians and kd-trees. In: Proc. 10th European Sympos. on Algorithms, pp. 5–16 (2002)

    Google Scholar 

  3. Agarwal, P.K., Guibas, L.J., Hershberger, J., Veach, E.: Maintaining the extent of a moving point set. Discrete Comput. Geom. 26(3), 353–374 (2001)

    MATH  MathSciNet  Google Scholar 

  4. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures of points. J. ACM 51(4), 606–635 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alexandron, G., Kaplan, H., Sharir, M.: Kinetic and dynamic data structures for convex hulls and upper envelopes. In: Proc. 9th Intl. Workshop on Data Structures, pp. 269–281 (2005)

    Google Scholar 

  6. Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. J. Algorithms 31, 1–28 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Basch, J., Guibas, L.J., Zhang, L.: Proximity problems on moving points. In: Proc. 13th ACM Sympos. Comput. Geom., pp. 344–351 (1997)

    Google Scholar 

  8. The CGAL Library, http://www.cgal.org/

  9. Collins, G., Akritas, A.: Polynomial real root isolation using Descarte’s rule of signs. In: Proc. 3rd ACM Sympos. Symbol. Algebra. Comput., pp. 272–275 (1976)

    Google Scholar 

  10. The Core Library, http://www.cs.nyu.edu/exact/

  11. Fortune, S.: Progress in computational geometry. In: Martin, R. (ed.) Directions in Geometric Computing, pp. 81–128. Information Geometers Ltd. (1993)

    Google Scholar 

  12. Funke, S., Klein, C., Mehlhorn, K., Schmitt, S.: Controlled perturbation for Delaunay triangulations. In: Proc. 16th ACM-SIAM Sympos. Discrete Algorithms, pp. 1047–1056 (2005)

    Google Scholar 

  13. Guibas, L.J.: Algorithms for tracking moving objects. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn. CRC Press, Boca Raton (2004)

    Google Scholar 

  14. Guibas, L.J., Karavelas, M.: Interval methods for kinetic simulation. In: Proc. 15th Annu. ACM Sympos. Comput. Geom., pp. 255–264 (1999)

    Google Scholar 

  15. Guibas, L.J., Karavelas, M., Russel, D.: A computational framework for handling motion. In: Proc. 6th Workshop on Algorithm Engineering and Experiments, pp. 129–141 (2004)

    Google Scholar 

  16. Guibas, L.J., Russel, D.: An empirical comparision of techniques for updating Delaunay triangulations. In: Proc. 20th Annu. Sympos. Comput. Geom., pp. 170–179 (2004)

    Google Scholar 

  17. Halperin, D., Shelton, C.: A perturbation scheme for spherical arrangements with application to molecular modeling. Comput. Geom. Theory Appl. 10, 273–287 (1998)

    MATH  MathSciNet  Google Scholar 

  18. Jacobson, N.: Basic Algebra I, 2nd edn. W.H. Freeman, New York (1985)

    MATH  Google Scholar 

  19. Milenkovic, V., Sacks, E.: An approximate arrangement algorithm for semi-algebraic curves. In: Proc. 22nd Annu. Sympos. Comput. Geom., pp. 237–246 (2006)

    Google Scholar 

  20. Schirra, S.: Robustness and precision issues in geometric computation. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 597–632. Elsevier Science, Amsterdam (2000)

    Chapter  Google Scholar 

  21. Yap, C.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn. CRC Press, Boca Raton (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abam, M.A., Agarwal, P.K., de Berg, M., Yu, H. (2006). Out-of-Order Event Processing in Kinetic Data Structures. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_56

Download citation

  • DOI: https://doi.org/10.1007/11841036_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38875-3

  • Online ISBN: 978-3-540-38876-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics