Abstract
We give experimental and theoretical results on the problem of computing the treewidth of a graph by exact exponential time algorithms using exponential space or using only polynomial space. We first report on an implementation of a dynamic programming algorithm for computing the treewidth of a graph with running time O ∗ (2n). This algorithm is based on the old dynamic programming method introduced by Held and Karp for the Traveling Salesman problem. We use some optimizations that do not affect the worst case running time but improve on the running time on actual instances and can be seen to be practical for small instances. However, our experiments show that the space used by the algorithm is an important factor to what input sizes the algorithm is effective. For this purpose, we settle the problem of computing treewidth under the restriction that the space used is only polynomial. In this direction we give a simple O ∗ (4n) algorithm that requires polynomial space. We also prove that using more refined techniques with balanced separators, Treewidth can be computed in O ∗ (2.9512n) time and polynomial space.
This research was partially supported by the project Treewidth and Combinatorial Optimization with a grant from the Netherlands Organization for Scientific Research NWO and by the Research Council of Norway and by the DFG research group ”Algorithms, Structure, Randomness” (Grant number GR 883/9-3, GR 883/9-4). The research of the last author was supported by the Spanish CICYT project TIN-2004-07925 (GRAMMARS).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth. 8, 277–284 (1987)
Bachoore, E.H., Bodlaender, H.L.: New upper bound heuristics for treewidth. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 217–227. Springer, Heidelberg (2005)
Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comp. Sci. 209, 1–45 (1998)
Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005)
Bodlaender, H.L., Koster, A.M.C.A., Wolle, T.: Contraction and treewidth lower bounds. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 628–639. Springer, Heidelberg (2004)
Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput. 31, 212–232 (2001)
Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor. Comp. Sci. 276, 17–32 (2002)
Clautiaux, F., Moukrim, A., Négre, S., Carlier, J.: Heuristic and meta-heuristic methods for computing graph treewidth. RAIRO Operations Research 38, 13–26 (2004)
Dendris, N.D., Kirousis, L.M., Thilikos, D.M.: Fugitive-search games on graphs and related parameters. Theor. Comp. Sci. 172, 233–254 (1997)
Fomin, F.V., Grandoni, F., Kratsch, D.: Some new techniques in design and analysis of exact (exponential) algorithms. Bulletin of the EATCS 87, 47–77 (2005)
Fomin, F.V., Kratsch, D., Todinca, I.: Exact (exponential) algorithms for treewidth and minimum fill-in. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 568–580. Springer, Heidelberg (2004)
Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: Proceedings of the 20th Annual Conference on Uncertainty in Artificial Intelligence UAI 2004, Arlington, Virginia, USA, pp. 201–208. AUAI Press (2004)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
Gurevich, Y., Shelah, S.: Expected computation time for Hamiltonian path problem. SIAM J. Comput. 16, 486–502 (1987)
Held, M., Karp, R.: A dynamic programming approach to sequencing problems. J. SIAM 10, 196–210 (1962)
Koster, A.M.C.A., Wolle, T., Bodlaender, H.L.: Degree-based treewidth lower bounds. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 101–112. Springer, Heidelberg (2005)
Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)
Shoikhet, K., Geiger, D.: A practical algorithm for finding optimal triangulations. In: Proc. National Conference on Artificial Intelligence (AAAI 1997), pp. 185–190. Morgan Kaufmann, San Francisco (1997)
Treewidthlib (2004), http://www.cs.uu.nl/people/hansb/treewidthlib
Villanger, Y.: Improved exponential-time algorithms for treewidth and minimum fill-in. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 800–811. Springer, Heidelberg (2006)
Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M. (2006). On Exact Algorithms for Treewidth. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_60
Download citation
DOI: https://doi.org/10.1007/11841036_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38875-3
Online ISBN: 978-3-540-38876-0
eBook Packages: Computer ScienceComputer Science (R0)