Abstract
In [1], we presented a shortest path algorithm that allows fast point-to-point queries in graphs using preprocessed data. Here, we give an extensive revision of our method. It allows faster query and preprocessing times, it reduces the size of the data obtained during the preprocessing and it deals with directed graphs. Some important concepts like the neighbourhood radii and the contraction of a network have been generalised and are now more flexible. The query algorithm has been simplified: it differs only by a few lines from the bidirectional version of Dijkstra’s algorithm. We can prove that our algorithm is correct even if the graph contains several paths of the same length.
Experiments with real-world road networks confirm the effectiveness of our approach. Preprocessing the network of Western Europe, which consists of about 18 million nodes, takes 15 minutes and yields 68 bytes of additional data per node. Then, random queries take 0.76 ms on average. If we are willing to accept slower query times (1.38 ms), the memory usage can be decreased to 17 bytes per node. For the European and the US road networks, we can guarantee that at most 0.05% of all nodes are visited during any query.
Partially supported by DFG grant SA 933/1-3.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579. Springer, Heidelberg (2005)
Goldberg, A.V., Harrelson, C.: Computing the shortest path: A * meets graph theory. In: 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 156–165 (2005)
Willhalm, T.: Engineering Shortest Path and Layout Algorithms for Large Graphs. PhD thesis, Universität Karlsruhe (TH), Fakultät für Informatik (2005)
Schultes, D.: Fast and exact shortest path queries using highway hierarchies. Master’s thesis, Universität des Saarlandes (2005)
Gutman, R.: Reach-based routing: A new approach to shortest path algorithms optimized for road networks. In: 6th Workshop on Algorithm Engineering and Experiments (2004)
Goldberg, A., Kaplan, H., Werneck, R.: Reach for A *: Efficient point-to-point shortest path algorithms. In: Workshop on Algorithm Engineering & Experiments (2006)
UA Census 2000 TIGER/Line Files, U.S. Census Bureau, Washington, DC (2002), http://www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sanders, P., Schultes, D. (2006). Engineering Highway Hierarchies. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_71
Download citation
DOI: https://doi.org/10.1007/11841036_71
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38875-3
Online ISBN: 978-3-540-38876-0
eBook Packages: Computer ScienceComputer Science (R0)