Skip to main content

Graph Transactions as Processes

  • Conference paper
Graph Transformations (ICGT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4178))

Included in the following conference series:

  • 943 Accesses

Abstract

Transactional graph transformation systems (t-gtss) have been recently proposed as a mild extension of the standard dpo approach to graph transformation, equipping it with a suitable notion of atomic execution for computations. A typing mechanism induces a distinction between stable and unstable items, and a transaction is defined as a shift-equivalence class of computations such that the starting and ending states are stable and all the intermediate states are unstable.

The paper introduces an equivalent, yet more manageable definition of transaction based on graph processes. This presentation is used to provide a universal characterisation for the class of transactions of a given t-gts. More specifically, we show that the functor mapping a t-gts to a graph transformation system having as productions exactly the transactions of the original t-gts is the right adjoint to an inclusion functor.

Supported by the CNPq-CNR IQ-Mobile II, the EC RTN 2-2001-00346 SegraVis, the EU IST-2004-16004 SEnSOria and the MIUR PRIN 2005015824 ART.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baldan, P., Corradini, A., Dotti, F.L., Foss, L., Gadducci, F., Ribeiro, L.: Towards a notion of transaction in graph rewriting. In: Bruni, R., Varró, D. (eds.) Proceedings International Workshop on Graph Transformation and Visual Modeling Techniques. Electr. Notes in Theor. Comp. Sci. Elsevier, Amsterdam (to appear, 2006)

    Google Scholar 

  2. Baldan, P., Corradini, A., Montanari, U.: Concatenable graph processes: relating processes and derivation traces. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, p. 283. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Baldan, P., Corradini, A., Montanari, U.: Unfolding of double-pushout graph grammars is a coreflection. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 145–163. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Bruni, R., Montanari, U.: Zero-safe nets: Comparing the collective and individual token approaches. Info. & Comp. 156(1-2), 46–89 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bruni, R., Montanari, U.: Transactions and zero-safe nets. In: Ehrig, H., Juhás, G., Padberg, J., Rozenberg, G. (eds.) APN 2001. LNCS, vol. 2128, pp. 380–426. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Corradini, A., Ehrig, H., Löwe, M., Montanari, U., Padberg, J.: The category of typed graph grammars and its adjunctions with categories of derivations. In: Cuny, J., Engels, G., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073. Springer, Heidelberg (1996)

    Google Scholar 

  7. Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informaticae 26(3/4), 241–265 (1996)

    MATH  MathSciNet  Google Scholar 

  8. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation I: Basic concepts and double pushout approach, ch. 3. In: Rozenberg [15], pp. 163–245

    Google Scholar 

  9. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformation. Applications, Languages and Tools, vol. 2. World Scientific, Singapore (1999)

    Google Scholar 

  10. Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformation. Concurrency, Parallelism, and Distribution, vol. 3. World Scientific, Singapore (1999)

    Google Scholar 

  11. Große-Rhode, M., Parisi-Presicce, F., Simeoni, M.: Formal software specification with refinements and modules of typed graph transformation systems. Journal of Computer and System Science 64(2), 171–218 (2002)

    Article  MATH  Google Scholar 

  12. Habel, A., Müller, J., Plump, D.: Double-pushout graph transformation revisited. Mathematical Structures in Computer Science 11(5), 637–688 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Heckel, R., Ehrig, H., Engels, G., Täntzer, G.: Classification and comparison of module concepts for graph transformation systems, ch. 17. In: Ehrig, et al. [9], pp. 669–689

    Google Scholar 

  14. Kreowski, H.-J., Kuske, S.: Graph transformation units and modules. In: Ehrig, et al. [9], ch. 15, pp. 607–638

    Google Scholar 

  15. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. 1. World Scientific, Singapore (1997)

    Book  Google Scholar 

  16. Schürr, A., Winter, A., Zündorf, A.: The PROGRES approach: Language and environment, ch. 13. In: Ehrig, et al. [9], pp. 487–550

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baldan, P., Corradini, A., Foss, L., Gadducci, F. (2006). Graph Transactions as Processes. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds) Graph Transformations. ICGT 2006. Lecture Notes in Computer Science, vol 4178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841883_15

Download citation

  • DOI: https://doi.org/10.1007/11841883_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38870-8

  • Online ISBN: 978-3-540-38872-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics