Reihe Informatik
TR-2006-011

Kappa-Join: Efficient Execution of
Existential Quantification in XML Query
Languages

M. Brantnet S. Helmet C-C.Kanné G. Moerkotté

lUniversity of Mannheim
B6, 29
68131 Mannheim, Germany
brantnefkanneémoerkotte@informatik.uni-mannheim.de

2 Birkbeck College
University of London

United Kingdom
sven@dcs.bbk.ac.uk

Kappa-Join: Efficient Execution of Existential
Quantification in XML Query Languages

Matthias Brantnér:, Sven Helmet, Carl-Christian Kannk and Guido Moerkotte

1 University of Mannheim, Mannheim, Germany
br ant ner |kanne|noer kot t e@ nf or mat i k. uni - mannhei m de
2 Birkbeck College, University of London, London, United Iigiom
sven@ics. bbk. ac. uk

Abstract. XML query languages feature powerful primitives for forratiihg
queries involving comparison expressions which are existéy quantified. If
such comparisons involve several scopes, they are cateland become diffi-
cult to evaluate efficiently.

In this paper, we develop a new ternary operator, called Ealgin, for effi-
ciently evaluating queries with existential quantificatitn XML queries, a cor-
relation predicate can occur conjunctively and disjuradyivOur decorrelation
approach not only improves performance in the conjunctagecbut also allows
decorrelation of the disjunctive case. The latter is nosjlads with any known
technique. In an experimental evaluation, we compare teeyggxecution times
of the Kappa-Join with existing XPath evaluation techngtedemonstrate the
effectiveness of our new operator.

1 Introduction

Almost every XML query language features a construct thiatel to express an ex-
istentially quantified comparison of two node-set valuebdesypressions in a concise
manner. Unfortunately, current XML query processors laificiency and scalability
when facing such constructs [5,21]. The corresponding aéntaresembles that of
nested and correlated subqueries, which are notoriouiiguti to evaluate efficiently.
To illustrate this point, let us consider the following gyefor hiring a teaching assis-
tant, we search the database for a student who took an examabgraded better than
‘B

Here, both sides of the

for $s in /Istudent comparison in thenher e-

let $hest = /lexam[grade 'B'/@id clause are set-valued be-
let $exams = $s/examination/@id Q1 cause there are many good
where $exams = $best students and students take
return $s/name more than one exam. The

existential semantics of the XQuery general comparisomatperequires that all stu-
dents are returned which have at least one exam also codiaittee setbest .

A naive evaluation technique evaluates the steps in ofdggpearance. In Q1, this
means to reevaluate the valuestifest and$exans for every iteration of the for loop,

* This work was supported by the Deutsche Forschungsgenhafissmder grant MO 507/10-1.

and then check for an item that occurs in both sets. This isstefid strategy: A closer
look at Q1 reveals that in contrast$exans, the value offbest does not depend on
the value of$s, making the reevaluation &fbest unnecessary. A common strategy
in such cases is to move the evaluatio$best out of the for loop, and to materialize
and reuse the result. However, this only alleviates the Ipminf repeated evaluation
of the expression to whichbest is bound. To answer the query, it is still necessary to
evaluate thevher e-predicate, which is a correlated nested query due to thetestial
semantics of the '=" operator and the fact that it refers toaldes from two scopes, the
independen$best and the dependefiexans.

In this paper, we are concerned with an efficient evaluatfoexastentially quan-
tified correlation predicatesuch as thevher e-clause of Q1. While this area has re-
ceived some attention in the past, we show that there isustédkploited optimization
potential for typical query patterns in XML query languagegen in simple cases like
our Query Q1. We propose the novel Kappa-Join operator ttatally fits into execu-
tion plans for quantified correlation predicates, is eadynjglement and yet features a
decorrelated evaluation algorithm.

Q1 is "simple” because the correlation predicate occurst®mivn. What if the
correlation predicates become more complex? Assume thabngdereithergoodor
senior students to be eligible for assistantship, as inaheWing query:

If the two clauses were

combined with and, we o $s in //student

could use techniques to|et $best = llexam[grade 'B')/@id
decorrelate queries with cordet $exams = $s/examination/@id Q2
relation predicates that oc- where $exams = $best or $s/semester

cur conjunctively. If the return $s/name

clauses were not correla-

tion predicates, we could use techniques to improve pedao® for disjunctive predi-
cates (e.g. Bypass operators [7]). However, there is naghéad technique to decorre-
latedisjunctivelyoccurring correlation predicates.

Hence, we also present a Bypass variant of the Kappa-Jois allbws a decorre-
lated evaluation of disjunctively occurring correlatioregicates, which has not been
accomplished for any query language so far.

The main contributions of this paper are as follows:

— We introduce the novel ternary Kappa-Join operator thatlendimple to imple-
ment, can efficiently evaluate complex correlated queriberes the correlation
predicate occurs conjunctively.

— We introduce a Bypass variant of the Kappa-Join that allesv® @xtend our tech-
nigue to queries where the correlation predicate occurglisjanction.

— We provide experimental results, demonstrating the sapsgriof both the Kappa-
Join and the Bypass-Kappa-Join compared to other evatuihniques.

The remainder of this paper is organized as follows. In the section we discuss
basic concepts, such as dependency and correlation in XRalec. 3, we discuss the
drawbacks of existing decorrelation approaches for XMLrgl@nguages. Further, we
introduce our novel Kappa-Join operator to efficiently eaté queries with conjunctive

correlation. Sec. 4 investigates the case of disjunctivestation and therefore presents
the novel Bypass Kappa-Join. In Sec. 5 we experimentallfirothe efficiency of our
approach. The last Section concludes the paper.

2 XPath Query Processing

The problems discussed in the introduction affect mostiegXML query languages.
However, all of the involved issues occur even for the singitath language in its first
version because it features nested predicates and eiast@mrhantics. In the following,
we limit our discussion to XPath 1.0, because peripheratsogpuch as typing, query
normalization, and translation into an algebraic repreg@m can be presented in a
simpler fashion for XPath than for the more powerful XQueagduage. However, all
of the techniques presented in this paper also apply fotbloliivn XQuery or similar
languages, as long as they are evaluated algebraically{28)y. In fact, both queries
from the introduction can be expressed in XPath syntax, asilveee below.

2.1 Normalization

The techniques presented in this paper are mainly develmpeptimize comparison
expressions with one dependent and one independent opd@mdrrectly identify
such expressions, the first step of our normalization iswgsite a predicate such that
it consists of literals and the logic operatgrsand V. Each literall consists either of
a comparison or a negation thereof, i.es of the forme;fes or not(e10es), where
0 {=<<,>2>#}

One example for "hidden” comparisons are location pathglweronode-set valued
expressions when used as Boolean expressions. In such sasesake the node-set
valued expression the argument of an auxiliexistsfunction and compare its result to
true, yielding a regular binary comparison expression.

Further, to provide efficient evaluation for disjunctivelgcurring comparison ex-
pressions, the second step of our normalization sepafaise titerals that occur in a
conjunction from those that occur disjunctively. To thisiewe employ an operation
for collecting all literals that occur conjunctively: A dital occurs conjunctively in
a predicatep;, if we replace all occurrences ofinsidep, by false and the resulting
expression can be evaluated to false using Boolean singtidit rules to eliminate
Boolean constants, then the original litekalccurs conjunctively iny.

2.2 Context Dependency & Correlation

In this paper, we are concerned with efficient evaluatiorxadtentially quantified com-
parison expressions that aserrelated In general, correlation occurs when a variable
of a nested scope is compared with a variable from an engasiope. XPath does not
have variables that can be declared by the user, but we caredefirelation in terms
of XPathcontextsas follows.

Every XPath expression is evaluated with respect to a gieatext, which is a se-
quence otontext itemsFor our discussion, it is sufficient to use a definition ofteot

item that is slightly simpler than the original XPath coritéem. A context item is
a tuple with three components: thentext nodgethe context positionand thecontext
size In XPath, there is one global context, which must be specHie parameter of
the evaluation process. The value of some constructs demeracal contextghat are
generated by other subexpressions. The constructs teatoghe local context are lo-
cation steps, relative location paths, and callpdsi t i on() andl ast () . We call
these expressiordependenexpressions. Expressions whose value is independent of
the local context are calldddependenéxpressions.

If we apply this terminology to Queries Q1 and Q2 from theadtrction, given in
XPath syntax, we have

//student[examination/@id = //exam[grade <’ B']/@id]/ name
—_——— S~~~

Q1
independent dependent independent dependent
tudent ination/@id = de <" B']/@id t 5
/ /student][examination /@i //exam|grade <’ B']/@id or semester > 5]/name Q2

dependent independent dependent indep.

We now can define the term correlation for XPath as used ingimainder of this

paper: A comparison expression with one dependent and clepémdent operand is
calledcorrelation predicatebecause it compares a local context and an enclosing con-
text. Both example queries presented in the introductioniain correlation predicates.
A correlation predicate can occur both conjunctively argjutiictively. We call the for-
mer caseconjunctive correlatiorand the lattedisjunctive correlationln Q1 there is
only one comparison expression which is a special case g¢fiactive correlation, i.e.
one with only a single literal. Q2 is an example with disjunetorrelation.

3 Kappa-Join for Conjunctive Correlation

The key to an efficient evaluation of correlated queries iavimd redundant computa-
tion, e.g. the evaluation of the inner independent exppesS§iuch techniques are called
decorrelation techniques and have been studied extepgivitle context of relational
and object-oriented systems [8,10,11,17,18, 28]. Sintdahniques have been pro-
posed for the evaluation of XQuery and XPath [5, 21]. One efittis an approach that
applies decorrelation to existentially quantified comgami expressions [5]. However,
this approach is suboptimal because unnecessary dugl@aaenerated and must be
removed at the end of the evaluation.

The optimizations developed in this paper are presentdukiform of algebraic op-
erators. Hence, we need an algebra capable of evaluatinip X®ea have chosen NAL
as a perfect fit, since a translation from XPath to NAL is aleailable [4]. However,
our approach is not limited to NAL and the translation of XPato it, e.g. [25].

In this section, we describe our assumptions about algebnaislation and eval-
uation in more detail. For a more elaborate treatment ofetliegics, please refer to
[4,5]. We then recapitulate the decorrelation approacimfij@] and discuss its draw-
backs. Afterwards, we introduce the novel Kappa-Join dpethat features an efficient
decorrelation algorithm avoiding these drawbacks.

3.1 Algebra & Translation

The universe of the NAL algebra for XPath 1.0 is the union efdbmains of the atomic
XPath 1.0 typesqt ri ng, nunber, bool ean) and the set of ordered sequences
of tuples which represent XPath contexts. Each tuple repte®ne context node, posi-
tion and size. Special attribute names are used to hold titexamode ¢n), the context
position ¢p) and the context size:§). We will provide explanations with an example
below.

The NAL algebra features well-known operators [4,21]. Alétsequence-valued
operators in the logical algebra have a corresponding im@itgation as aiterator [13]
in the physical algebra. In the following, we primarily negelectionr, the Projection
I1, the Semi-JoinX, and theD-Join M. These operators are formally defined in our
technical report [22].

To convert XPath queries into algebraic expressions, weheséranslation intro-
duced in [4]. We briefly recapitulate the relevant part ofttla@slation process by elab-
orating on the translation result for Q1 (see Fig. 1). Howewe omit the translation of
subexpressions that are orthogonal to our discussion amateléhem by7 [e], where
e stands for any XPath expression. For instance, we denoteahslation of the lo-
cation path/ / st udent by 7[//student], its result is the sequence of context nodes
produced by the location path.

For Q1 (see Fig. 1) the algebra

expression provides a selection) (T[n]mle]

for the only literal. In the subscript ;T ~<_

(denoted by a dashed line) of this 7[//student] gc’im

selection, there is an Aggregation /'X\

operator that aggregates the inpttxamination/@id] T[//exam[grade <’ B']/@id]
sequence into a singleton sequence

with a single attribute by applying Fig. 1. Translation sketch for Q1

the aggregation functioaxists. It

returns true if there exists at least one tuple in the inpgtisace. This input sequence
stems from a Semi-Join, whose input sequences in turn stam thie two operands

of the comparison expression, i.e. the two (translatedjtion path expressions. For a
comparison between two node-sets, as in the particularof&@#, we have an existen-

tial semantics. In the equality case, this fact can be Igezidy using a Semi-Join.

3.2 Existing Decorrelation Techniques

We now recapitulate the decorrelation approach introdirc€s] and discuss its draw-
backs. Again, we take Query Q1 to illustrate this (see Fig. 1)

The fundamental idea of decorrelation is to avoid unnecgsszaluation of the
inner independent expression. In [5] this is achieved byimylp the Semi-Join (see
Fig. 1) into the top-level algebraic expression (see Fig. 2)

This expression needs some explanations. The dependetiblopath is connected
to the outer expression using a D-Jok) The D-Join joins each tuptec 77/ /student]
to all tuples returned by the evaluation of the dependehtpatxamination/@id]. For
eacht, 7 [examination/@id] is evaluated once, and free occurrences of variables in the

dependent expression are substituted with the attribubesaft, i.e. the current con-
text. At the end all resulting sequences are concaterfated.

The dependent expression, i.e. the evaluation using thei)+hight produce du-
plicates for tuples fronT [/ /student], hence theid 4 operator is needed to identify the
tuples resulting from the outer expression.

The idea is to densely num-

ber the tuples, store this number 7 [name]

in an attribute A, and use it later mtida

on to perform a duplicate elimina- [L

tion. To do t_hls, we _mtrodut_:e_an y T(/ Jexam[grade <’ B']/@id]
order-preserving duplicate elimina- -

- o ; : tid T[examination/@id
tion projection I7**44, which re- e [examination/@id]

moves multiple occurrences of the? [//student]
sametid-value A. It keeps the first
tuple for a givenA value and throws
away the remaining tuples with the same valueAor

Clearly, the main advantage of this approach is that thepeddent expression
is evaluated only once. In addition, if the Semi-Join’s iempkntation uses a custom
data structure (e.g. a hash table) to improve performahisedata structure has to be
initialized only once, compared to one initialization pardent in the naive correlated
evaluation from Fig. 1. However, decorrelation comes atieepiThe outer expression
produces duplicates which have to be eliminated. Below, wasvshow we can avoid
them using the novel Kappa-Join. Our evaluation in Sec. fitos this claim.

Fig. 2. Decorrelation for Query Q1

3.3 Kappa-Join

To avoid the above-mentioned generation of duplicatesnbuértheless gain perfor-
mance by avoiding unneeded evaluations of the independpregsion, we introduce
the Kappa-Join operator. It combines the advantages ofileaion strategies from
Fig. 2 and Fig. 1 into one operator and capitalizes on effidi@mplementation tech-
nigues.

Logical Definition The Kappa-Joinis a ternary operator, i.e. it has three argument
expressions;, ez, andes. It is defined by the equation

€2
€1k €3 = O (&
Wen=cn’©3 gz:ezists (52l><cn:6n/53)(1)

wherecn is the context node resulting from the evaluatiompfndcn’ the context
node fromes. As for conventional join operators, we denote the first astl producer
expressions asuter producerandinner producey respectively. The second producer
expressionm, (in the superscript) is calldihk producerbecause it acts as a link between
the outer and inner producer within the join predicate. Titeoexpression; and the

% In [25] this operator is called MapConcat.

inner expressiong are independent expressions, i.e. they do not depend onf éimg o
Kappa-Join's other arguments. In contrast, the expregsitsdependent on; .
Informally, the result sequence of the operator contaihtuples from the outer
producer ¢,) for which there exists at least one tuple in the link produeg), when
evaluated with respect to the current tuple pfthat satisfies the predicgtevhich is a
comparison from attributes ef, and attributes of the the inner producer)(

Translation with Kappa-Join There exist two alternatives to incorporate the Kappa-
Join into an algebraic plan: (1) The Kappa-Join's definitinatches the pattern that
results from the canonical translation of correlation prates, such as the Selection op-
erator in Fig. 1. Hence, the Kappa-Join can replace thispuatlirectly after translation.
(2) The other alternative is to modify the translation pehoe such that a Kappa-Join
is used for conjunctive correlation predicates.

Because our experiments (see

Sec. 5) show that the Kappa- 7T [name] o |
Join always dominates the canon- mz[exammatlon/@ld}

ical approach and it simplifies

the translation procedure, we have 7[//student] T[//exam[grade <’ B']/@id]

chosenthe second alternative.Fig. 3
contains the resulting algebra ex-
pression for Q1. Here, the outer
producer of the Kappa-Join is mapped to the location past udent . The link pro-
ducer is the dependent inner location pattani nati on/ @ d, and the inner pro-
ducer is the independent expressidrexani gr ade<’ B']/ @ d.

Fig. 3. Query Q1 with Kappa-Join

OPEN Implementation The secret of the Kappa-

1 while T — INNERPRODUCER NEXT Join Iie§ in its_ simple, yet gﬁicient imple-

2 do HASHTABLE.INSERT(T') mentation, which improves its performance
beyond that of the operator combination in

NE1XT e T OureRP N its logical definition. Fig. 4 shows the pseu-
2 v '%0 1 PUTERTRODREERTET docode for the implementation of the Kappa-
3 whie T o LixProsuceanexy 00N as an iterator [13].

5 do In its open method, the Kappa-Join
0 THasHTABLE.LOOKUP(T2) pyilds a data structure, e.g. a hash-table, con-
8 LinkProbucerCLose taining the attributes from the inner producer

o retum Ty that are part of the join predicate. In its next
11 LINK PRODUCER CLOSE method, the Kappa-Join initializes the link
12 rewrn nil producer for every tupl&,; fromits outer pro-

Fig. 4. Pseudocode for the Kappa-Joirflucer. Like a Semi-Join, it then probes the
hash table with tuple$: from the link pro-

ducer until a matching one is found, and re-
turns the outer tuple as soon as it finds a match. The Kappeddeis not always enu-
merate all tuples from the dependent link producer, whita@asame time only building
the hash table once.

Compared to the algebra plan from Fig. 2, the plan in Fig. Bgitie Kappa-Join
has three main advantages: (1) it avoids to enumerate &digfimm the link producer
because itimmediately returns a result if one match is fqaed Line 9). (2) It does not
produce duplicates of tuples from the outer producer bectgsresult contains at most
one tuple from7 [/ /student], and (3) consequently saves the cost of a final duplicate
elimination. These effects combine to yield the speedupdiiabe achieved.

4 Kappa-Join for Disjunctive Correlation

In the previous section we demonstrated how complex cdivalpredicates that oc-
cur in a conjunction can be evaluated efficiently. Howevsrslaown in our Example
Q2, correlation predicates can also occur disjunctivedye$al optimization techniques
for queries containing noncorrelated disjunctive pretdisaave been proposed [6, 7,
16]. One of them is the Bypass technique [7] that is used tadawonecessary eval-
uation. However, to the best of our knowledge, nobody hawsHww to decorrelate
disjunctively occurring correlation predicates. In theggon, we show how this can be
achieved.

4.1 Problem

Consider the canonical algebra plan for T namd]

Query Q2 (see Fig. 5). This algebra ex- |

pression is similar to the one presented in 1 ~~<_

Fig. 1 for Q1, except for ther function T//student] /‘or\

call in the subscript of the Selection. Dis- Dosciste T [semester > 5]
junctively occurring literals are translated X

using anor function call. It evaluates to T[Cxammaﬁon@ T/ Jexam]...]/@id]
true if either of its producer expressions

does. Fig. 5. Translation sketch for Q2

The pattern used for the correlation
predicate does not match the definition of
the Kappa-Join because of the extra literal. Hence, we d¢gmoceed as for Query
Q1. The only technique currently available to improve thaaracal plan is the so-
called shortcut evaluation of the disjunction, which metirzg we can avoid evalua-
tion of the expensive correlation predicate for those sttglehere the cheaper literal
semester > 5 is true. Below, we recall the Bypass technique which doestixthat.

4.2 Bypass Technique

The Bypass technique was used to prevent the unnecesshrgtéaof predicates that
occur disjunctively [7]. For this, the Bypass technique ssddhew class of operators
to the conventional algebra. In contrast to regular opesd@@gpass operators hatwo
output sequences. The first sequence contains the tupteguiify for the operator's
predicate. The second sequence consists of those tuptedatimot qualify the oper-
ator’s predicate. The two disjoint sequences are cdliegl and false-sequencelhe

existing Bypass technique provides a Bypass Selection,pa$yyJoin and a Bypass
Semi-Join [7]. For the purpose of this paper, we only needtpass Selection.
Consider as a first example the algebra representation okt@Bded by a Bypass
Selection operatow(t) for evaluating the cheaper predicatenester > 5. The result-
ing plan is shown in Fig. 6. Here and in the following, the éatequence is indicated
by dotted lines. The evaluation according to this plan stawith computing all result
tuples for the outer expressiofi/étudent).
The Bypass Selection divides
these tuples into two disjoint se- T[name]
quences. The true-sequence con- :

tains the students that fulfill the /U\

predicatesemester > 5. Accord-

ingly, the false-sequence con- /"i"\';' gcxm
tains the tuples that fail this predr(//student] Tlsemester > 5]
icate. The tuples of both se- exammdtwn/ ld]\

quences form two separate paths
which are merged byJ. The
tuples from the false-sequence
must pass the second Selection
operator computing the complex correlation predicates Dipierator is responsible for
filtering out those tuples that do not qualify for any of thetpredicates. The two se-
quences are disjoint. Hence, no duplicate eliminationdsired byJ. However, as the
XPath semantics requires its result to be in document oedererge as in merge-sort
may be required. This can be done, for example, by numbehiaguples before use
or use node ids if they represent order. The final processifigicame| completes the
result.

Looking at Fig. 6, we are in for a surprise: The Bypass Salactie introduced to
allow shortcut evaluation of the disjunction made the Kagppia pattern reappear! We
discuss in the following subsection how to leverage thiglfrorrelation of disjunctive
queries with a single correlation predicate.

T[//exam]...]/@id]
Fig. 6. Q2 with Bypass Selection

4.3 Kappa-Join for a Single Disjunctive Correlation Predicate

Query Q2 contains a single corre-

. - AN 7 T [name]
lation predicate within a disjunc- &
tion. Bypass plans have_ thg ad- K\T[examination /@id]
vantage that the expression in the L= -
false-sequence can be optimized /ai';';'\ T[//exam]...]/@id]
separately. In general, whenever 7[//student] Tsemester > 5]

there is only a single correlation

predicate per disjunction we CanFig. 7. Q2 with BypaSS Selection and Kappa—JOin
apply decorrelation. As seen in

Fig. 6, we can again recognize the

pattern that allows us to integrate the Kappa-Join for thguractive case. In the false-
sequence of Fig. 6, we can use the Kappa-Join, yielding theesgion shown in Fig. 7.

10

In this case, the plan takes advantage of both: (1) short@t&tion of the liter-
als connected by disjunction, and (2) decorrelation ofalation predicates allowing
efficient execution if the cheaper predicate in the disjiamcfails.

4.4 Kappa-Join for Multiple Disjunctive Correlation Predi cates

We have seen that the Bypass technique facilitates deatiorelif there is only one
correlation predicate in the disjunction. Unfortunatéfythere is more than one, we
are again at a loss. Consider as an example the followingyQ@@r In addition to the
good students, we also want to query the database for stutthatthave already been a
teaching assistant for a given lecture.

//student[examination/@id= //exam[grageB’)/@id or Q3
@id = /llecture[title="NCT])/helpers/helper/@studeimime

We would like to decor-
relate both correlation pred-

Tlname] icates. At first glance, it

U< _ is tempting to apply the

H'jdA /iz[@ld] decorrelation strategy that
)k T1/lecturel...]/.../@student] Was discussed in Sec. 3.2.

Fig. 8 shows an algebra
expression for Q3 apply-
ing this technique, but us-
ing a Bypass Semi-Join in-
stead of a regular Semi-
Join. However, this ap-
proach is not feasible. The
first D-Join on the leftmost
branch of the plan eliminates those items produced/syudent for which the depen-
dent expressioaxmination/@id produces an empty result. If we have a conjunctive
query, this is no problem.

However, the/ /student
items failing the first dis-

ﬁ/ T1/ Jexam]. .]/@id]

tida T [examination/@id]
|

T[//student]

Fig. 8. Incorrect decorrelated bypass plan for Q3

junct could still qualify for T[name]
the second disjunct, and 5
dropping them as in Fig. 8 / \/{T[@id]
produces an incorrect result. = -
©° T/ /lecture]...]/.../@student]

Note that the Bypass Semi-
Join does not help: it comes
too late. Problems of this 7(//student] T/ Joxaml...]/@id]

kind are often solved by us-

ing an outer join, or in this Fig. 9. Bypass plan sketches for Q2 with Kappa-Join
case outer D-Join. However,

this would still require du-

plicate elimination ortid 4 as shown in the true-sequence.

H:I:,T[examinatibh/@id]

11

It turns out that we can do much better by applyingBlypass Kappa-JoirAs every
bypass operator, the Bypass Kappa-Join has two resultiseggiel he true-sequence is
the same as for the regular Kappa-Join. The tuples in the-fdguence are the ones
from the outer producer for which there was no match in thelipmoducer or for which
the link producer returned an empty result.

In the false-stream, we now have our familiar pattern anderaploy the decorre-
lation strategy as if the correlation predicate was a singleelation predicate. Fig. 9
shows the result. This plan finally has everything we wanttli# evaluation of both
correlation predicates can be done in a decorrelated fasfiipthe Kappa-Join avoids
unneeded duplicate generation and elimination for bothetation predicates, and (3)
we have shortcut evaluation and only evaluate the secondlaton predicate if the
first fails.

5 Evaluation

To show the effectiveness of our approach, we ran expersneith different XPath

evaluation engines against our canonical and optimizedoagpes. Additionally, we
performed measurements that compare the existing deatiorektrategy against the
new Kappa-Join operator. We chose the freely availablenesgi

— Xalan C++ 1.8.0 using Xerces C++ version 2.6.0,

— Saxon for Java 8.7.1,

— Berkeley DB XML 2.0.9 (DBXML) using libpathan 1.99 as XPathgne,

— MonetDB 4.8.0 using MonetDB-XQuery-0.8.0,

— the evaluator provided by the XMLTaskForce [19] (XTF), and

— Natix [9] for the execution of the canonical, decorrelat€zJE06 [5]), and Kappa-
Join plans.

5.1 Environment

The environment we used to perform the experiments codsigta PC with an Intel
Pentium 4 CPU at 2.40GHz and 1 GB of RAM, running Linux 2.6shp. The Natix
C++ library was compiled with gcc 3.3.5 with optimizationwés 2.

For Xalan, Saxon, and XTF we measured the net timexicutethe query. The
time needed to parse the document and generate the main gespoesentation is
subtracted from the elapsed evaluation time. For the etrafuaf MonetDB, Berkeley
DB XML and Natix, we imported the documents into the database time needed
for this is not included in the execution times. The queriesenexecuted several times
with an empty buffer pool and without any indexes.

Documents We generated two different sets of documents. The first astdd for the
example queries Q1-Q3 used throughout this paper. Theserdotus were generated
using the ToXgene data generator*[1The smallest document contains 50 employ-
ees, 100 students, 10 lectures and 30 exams. With each dotwaeuadrupled these

4 The DTD as well as the generator template file are listed imfipendix of a technical report.

12

numbers. That is, the biggest document contains 51200 sexdo 102400 students,
10240 lectures and 30720 exams. This led to moderate dodwizes between 59kB
and 43MB.

The second set is used for the comparison of the existingdgation strategy and
the new Kappa-Join operator. We generated seven documeeitsed according th the
following template:

<?xm version="1.0" ?>

<gen>

<el id="0"><e2 id="0"/> ... i-e2 nodes <e2 id="i"'/> </el>
<el id="0"><e2 id="0/> ... i-e2 nodes <e2 id="i"/> </el>
<e3 i d=" RandonmNunber’ />

</ gen>

Each of the documents contains 1@Dnodes and 10083 nodes. For each docu-
ment we varied the number eR nodes (under aal node) between 10 and 500 nodes.
This gave us documents between 252kB and 13M.

Queries We executed performance mea-

surements for all example queries (Q1, [QuenfName Figure
Q2, and Q3) presented throughoutthis pa- |57 |decorr Fig. 2
per. For Natix, we generated several dif- kappa Fig. 3

ferent query evaluation plans for each of 02
the queries. For each of the queries we
generated the canonical plan as specified o3
in [4]. For example, Fig. 1 shows the
plans for Q1. Further, we generated plans
incorporating our optimization strategies. Fig. 10.Query Evaluation Plans
Fig. 10 gives a mapping from names for
optimized query evaluation plans to figures that illusttaetechniques used.
Additionally, we executed performance measurements thiatpare the existing
decorrelation strategy with our Kappa-Join operator. &€foae, we executed the fol-
lowing query on the synthetic data set:

/gen/el[e2/@id = /gen/e3/@id] Q4

bypass Fig. 6
kappa Fig. 7
bypasskapp&ig. 9

5.2 Results and Interpretation

Fig. 11 contains the results of our performance measuren(@apsed time in seconds).
The best execution time(s) for each column in all tables ardgqu in bold face. Those
that did not finish within 6 hours are marked by DNF (did notdir)i For MonetDB the
evaluation of some queries ran out of memory on bigger doatsn@hese cases are
denoted by OOM.

Subfigures 11(a), 11(b), and 11(c) show the execution time®1, Q2, and Q3,
respectively. For all queries on all documents, our det¢ated approach performs and

13

Documents Documents
Evaluator|| 1 2 3 4 5 6 Evaluator || 1 2 3 4 5 6
Xalan 0.30/0.386.17 95.6) 15521 DNF Xalan 0.02(0.23 3.63 54.7] 89312453
DBXML 0.07/0.66(11.6 336| DNF| DNF DBXML 0.06(0.39| 6.87] 207| DNF| DNF
MonetDB ||0.31{0.382.05 36.1O0OM|OOM MonetDB ||0.250.36| 2.02| 36.2O0OM| OOM
Saxon 0.21§0.280.53 1.4911.14 141 Saxon 0.2210.30) 0.62 1.44 7.82 85.4
XTF 0.404.72/82.8 DNF| DNF| DNF XTFE 0.76(8.6019180 DNF| DNF| DNF
Natix Natix
ecanonica)|0.252.62/38.2 583 9637 DNF ecanonical|0.16/1.64] 20.9 333| 5598 DNF
edecorr 0.0210.03[0.06 0.19 0.75 2.99 ebypass ||0.16/1.59 20.7| 323| 5436 DNF
ekappa 0.0210.03[0.06 0.19 0.75 2.88 ekappa 0.03[0.05[0.16{ 0.6 2.51 9.9
(a) Query Q1 (b) Query Q2
Documents ¢ Becorrefajon ——

Evaluator 1 2 3 4 5 6 weesen

Xalan 0.060.75 12.6 199 3201 DNF 8

DBXML 0.30/1.61f 30.214057| DNF| DNF

MonetDB 0.31§0.50 3.29 62.9 OOM|OOM 2

Saxon 0.2000.28 0.54{ 1.48 10.9 138| o

XTF 0.485.14 94.8DNF| DNF| DNF g e

Natix

ecanonical 0.37|3.49 DNF|DNF| DNF| DNF !

ebypasscanonicg0.37/3.43 48.1] 74912492 DNF

ebypasskappa |{0.02(0.04 0.10/ 0.35 1.44 5.91 08

(c) Query Q3 o Lt T

0 50 100 150 200 250 300 350 400 450 500
Number of inner nodes

(d) ICDEO6 vs. Kappa-Join (Q4)

Fig. 11. Performance measurements

scales best. Especially for the disjunctive queries Q2 aBdtkg performance of all
other approaches drops considerably when executed onrlidggements. In contrast,
our plans containing the Kappa-Join (Q2) and Bypass Kappa{®3) almost scale
linearly with the size of the document.

For Q1 the execution times of the existing decorrelatiomaggh (called ICDEOQ6 [5])
behave similar to those of the Kappa-Join. This is becaus#uments took very few
exams, i.e. only between one and three. For this reason, mpaed those two strate-
gies on the synthetic data set. Subfigure 11(d) contains padson between the two
strategies. The execution times of the existing decoicglatrategy grow linearly with
the number o£2 nodes peel node. This is because it has to enumerate 2lhodes
and finally perform a duplicate elimination on the approjgrsl nodes. The execu-
tion times of the Kappa-Join operator almost scale lineaity the document size.
The Kappa-Join does not need to enumerate2lhodes and saves the cost of a final
duplicate elimination.

6 Related Work

Work on XPath evaluation falls into three general categofiie the first category, we
have main memory interpreters like Xalan, XSLTProc, and.[Qearly, these ap-
proaches do not scale well. In the second category, we find wbere XML is shred-
ded into relational systems and XPath is evaluated on thedsled representation. In
this category we find approaches like Pathfinder [3]. The lpratwith this approach

14

are the numerous joins that have to be executed. Finallyhtteecategory uses a native
(tree) algebraic approach. Here, we find SAL [2], TAX [15]t saother algebra [27],
and [4]. None of the approaches in any of three classes pesfdecorrelation.

There are, however, special techniques such as avoidingcasgary ordering op-
erations [14], schema-based optimization [20], and répiaceverse axes [24]. These
techniques are orthogonal to our technique.

In the relational and object-oriented context decorrefatias been studied exten-
sively [8,10,11,17,18,28]. Similar techniques have bempgsed for the evaluation
of XQuery and XPath [5, 21]. Gottlob et.al [12] also proposedapproach that avoids
multiple evaluations of XPath expressions.

Several optimization techniques for queries containirsjudictive predicates have
been proposed [6, 7, 16]. One of them is the Bypass technijuehjch we extend with
support for decorrelation. Because bypass operators hvamvettput streams, which are
unioned later, the resulting expression forms a directgdlmograph (DAG). Strategies
for implementing Bypass operators and query evaluationnesghat support DAG-
structured query plans can be found in [7, 23, 26].

7 Conclusion

We demonstrate how to efficiently evaluate XML queries faatuexistentially quanti-
fied correlation predicates. To this end, we have introdtitedovel Kappa-Join opera-
tor that naturally fits into algebraic execution plans foantified correlation predicates.
It is simple to implement and yet highly efficient. Howevédisjunctions come into
play,all known decorrelation techniques fail. By injecting the KapJwin with the By-
pass technique, we are also able to perform decorrelatddatiea if the correlation
predicate occurs in a disjunction. All other approachesioaavaluate such a case effi-
ciently. Our performance measurements show that the Kapjpesutperforms existing
approaches by up to two orders of magnitude.

AcknowledgmentdNe would like to thank Simone Seeger for her comments on the
manuscript.

A Logical Operator Definitions

Order plays a crucial role in the semantics of XPath, and N#&\lan algebra on se-

quences. This fact has important implications on propedf¢he algebra (e.g. commu-
tativity) that are relevant for optimizations (see [21] for example). Hence, we give
the formal definitions of all operators used throughout gaper. We start with some

notations and afterwards provide the formal definitionsefdperators and bypass op-
erators.

A.1 Notation

A sequence-valued expressioresults in several tuples with the same attribudgs).
The attributes of a single tupteare also referred to ad(¢). Tuple and function con-
catenation are denoted by The set of free variables of an expressiois defined as

15

F(e). For an expressioa possibly containing free variables, and a tupleve denote
by e(t) the result of evaluating where bindings of free variables are taken from at-
tribute bindings provided b#. Of course this requireg(e) C .A(t). The concatenation
of tuples is denoted by.

For sequenceswe usex(e) to denote the first element of a sequence. The function
7 retrieves the tail of a sequence asdconcatenates two sequences. We denote the
empty sequence by

A.2 Algebra Definitions

In the following, we provide the formal definitions of the eptors used throughout this
paper.
The Selection selects qualifying tuples according to fuagip:

_ Jale)@oy(r(e)) if p(ale))
ople) = {ap(f(e)) olse.

Aggregates its input sequeneénto a singleton sequence with a single attribute
by applying the aggregation functigh

Aasr(e) == {[a: f(e)]}
Within the Semi-Join the predicatechecks for tuple existence i3 to decide on
including tuple iney:
o1 X e afer) @ (T(e1) Xp eg) if 3z € e2 p(afer) o x)
L2252 1(e1) X, en else

The D-Join joins each tuplg in e; to all tuples ine,, which depend ow;:

e1Xez := a(er)xez(aler)) & 7(e1) Mea.

where
Ty d € if eg =€
CI2C2 7 (e1 0 aez)) @ (e1X7(e2)) else

with F(ez) N A(er) # 0.
Thetid operators densely numbers the tuples, and stores this mimdeattribute
A. Itis defined as follows:

tida(e) := a(e) o [A : pos| ® tida(7(e)).

The Tid-Duplicate Elimination is an order preserving daate elimination. It keeps
the first tuple for a giver value and throws away the remaining tuples with the same
value forA.

tid (. Jale)la® Y% ((e)) if a(e).B & Hp(r(e))
I (e) := {sz;(T(e)f else ’

16

A.3 Bypass Algebra Definitions

In order to ease the formal description for the bypass opesateir definitions come
in two halves. The bypass selection, denoted byis divided into the part yielding the
true-sequence™ and the half yielding the false-sequence.

o, (€) :=ale) @ op(7(e)) if p(a(e))
o, () := ale) ® ap(7(e)) if not p(a(e))

The Bypass Kappa-Join operate[/@'ﬁ*e2 es) is defined in terms of the Bypass Se-
lection and also comes in two halves:

+;ea .+

€1k, “€3 = O, €1
P gm;emists(EZKPES))
—ieo -

ellip €3 = Gg

m;emists(GZKPES)

B Translation of XPath to NAL

A location steps; may contain an arbitrary numbér of predicateg, and has the
general forma; :: t;[p1]...[ps]. The pattern for translating [4] a location step ::
ti[p1] - . - [pn] with predicates is

Dlpplo---oPp1] o Ta; :: t;

where® is an auxiliary translation function for predicates, reing a filtering func-
tor which operates on algebraic expressions.

Within each predicate our normalization already colledtexbe literals that occur
conjunctively. Translating a predicate that contains afijanctively occuring literals
Pk = L1 A+ - -Algm,, that do notinclude positional clauses simply results imagtation
into Selection operators:

Pller A+ Algm,] == T (lkmy] © 77 © 0T [l

After the semantic analysis all clauses are broken downfurotion calls:l;; =
f10---o f.. For examplepr, not, and comparisons are all evaluated by function
calls. All disjunctively occuring literals are also traatdd using Selection operators.
However, they have ther function calls as subscript. It is translated straightfamv

Tlor(er, ..., en)] :==o0r(Tle1],..., 7T [en])

For the special case of comparisons between two node-séfstree particular case
of Q1 and Q2, the XPath semantics specifies existential straam the (in)equality
case, this fact can be leveraged by using a Semi-Join. Monealty, the translation
function [4] for a comparison operatian {=, #} between two node-sets into NAL is
defined as

’T[el@eg] = gm;em‘sts(lf[el] Xengen’ HD (7[62]))

cn’:cn

17

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

D. Barbosa, A. Mendelzon, J. Keenleyside, and K. Lyons{gEme: a template-based data
generator for XML. InProceedings of the ACM Sigmod, Madison, U23@02.

. C. Beeri and Y. Tzaban. SAL: An algebra for semistructutath and XML. InWebDB

(Informal Proceedings)pages 37-42, 1999.

. P. A. Boncz, T. Grust, S. Manegold, J. Rittinger, and J.bhen Pathfinder: Relational

xquery over multi-gigabyte XML inputs in interactive tim@echnical Report INS-E0503,
CWI, March 2005. MonetDB 4.8.0, Pathfinder 0.8.0.

. M. Brantner, S. Helmer, C-C. Kanne, and G. Moerkotte. -Hatlged Algebraic XPath Pro-

cessing in Natix. InProceedings of the ICDE Conference, Tokyo, Japgsges 705-716,
2005.

. M. Brantner, C-C. Kanne, S. Helmer, and G. Moerkotte. Btgé& optimization of nested

xpath expressions. IRroceedings of the ICDE Conference, Atlarmage 128, 2006.

. F. Bry. Towards an efficient evaluation of general queesntifier and disjunction process-

ing revisited. InProceedings of ACM SIGMOD Conference, Oregon, [y&4es 193-204,
1989.

. J. ClauRen, A. Kemper, G. Moerkotte, K. Peithner, and MirBrunn. Optimization and

evaluation of disjunctive querie$EEE Trans. Knowl. Data Eng12(2):238-260, 2000.

. U. Dayal. Of nests and trees: A unified approach to proeggsgileries that contain nested

subqueries, aggregates, and quantifierrbreedings of the VLDB Conference, Brighton,
England pages 197-208, 1987.

. T. Fiebig, S. Helmer, C-C. Kanne, G. Moerkotte, J. Neum&rSchiele, and T. Westmann.

Anatomy of a native XML base management syst&hDB Journal 11(4):292—-314, 2002.
C. Galindo-Legaria and M. Joshi. Orthogonal optim@atf subqueries and aggregation.
In Proceedings of ACM SIGMOD Conference, Santa Barbara,,p8ges 571-581, 2001.
R. A. Ganski and H. K. T. Wong. Optimization of nested sggiies revisited. liProceedings
of the ACM SIGMOD, San Francisco, Californages 23-33. ACM Press, 1987.

G. Gottlob, C. Koch, and R. Pichler. XPath query evatmtimproving time and space
efficiency. InProceedings of the ICDE Conference, Bangalore, Ingages 379-390, 2003.
Goetz Graefe. Query evaluation techniques for largabdates ACM Computing Surveys
25(2):73-170, 1993.

J. Hidders and P. Michiels. Avoiding unnecessary ongeoperations in xpath. IRroceed-
ings of the DBPL Conference, Potsdam, Germaages 54—70, 2003.

H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava, arithémpson. Tax: A tree algebra
for xml. In Prcoceedings of the DBPL Conference, Frascati, ltalyges 149-164, 2001.

M. Jarke and J. Koch. Query optimization in databaseesystACM Computing Surveys
16(2):111-152, June 1984.

W. Kiessling. SQL-like and Quel-like correlation queriwith aggregates revisited. ER-
L/UCB Memo 84/75, University of Berkeley, 1984.

W. Kim. On optimizing an SQL-like nested quepyTODS 7(3):443-469, September 1982.
C. Koch. XMLTaskForce XPath evaluator, 2004. Relea$d-09-30.

A. Kwong and M. Gertz. Schema-based Optimization of KHatpressions. Technical
report, University of California Davis, 2002.

N. May, S. Helmer, and G. Moerkotte. Nested queries aadtifiers in an ordered context.
In Proceedings of the ICDE Conference, Boston, MA, Li&fjes 239-250, 2004.
M.Brantner, S.Helmer, C-C. Kanne, and G. Moerkotte. g&ajpin: Efficient execution of
existential quantification in xml query languages. Techhieport, University of Mannheim,
2006.

18

23

24.

25.

26.

27.

28.

T. Neumann.Efficient Generation and Execution of DAG-Structured Quergphs PhD
thesis, University of Mannheim, 2005.

D. Olteanu, H. Meuss, T. Furche, and F. Bry. Xpath: LogKorward. InNXML-Based Data
Management and Multimedia Engineering Workshops XMLDMP®#Dand YRWS, Prague,
Czech Republigpages 109-127, 2002.

C. Re, J. Siméon, and M. F. Fernandez. A complete antesffialgebraic compiler for
xquery. InProceedings of the ICDE Conference, Atlanta, UBdge 14, 2006.

P. Roy. Optimization of DAG-structured query evaluatidans. Master’s thesis, Indian
Institute of Technology, Bombay, 1998.

C. Sartiani and A. Albano. Yet another query algebra fof data. InProceedings of the
IDEAS Conference, Edmonton, Canagages 106-115, 2002.

P. Seshadri, H. Pirahesh, and T. Y. Cliff Leung. Complexryg decorrelation. IRroceedings
of the ICDE Conference, New Orleans, U®ages 450-458, 1996.

