
Reihe Informatik
TR-2006-011

Kappa-Join: Efficient Execution of
Existential Quantification in XML Query

Languages

M. Brantner1 S. Helmer2 C-C. Kanne1 G. Moerkotte1

1University of Mannheim
B6, 29

68131 Mannheim, Germany
brantner|kanne|moerkotte@informatik.uni-mannheim.de

2 Birkbeck College
University of London

United Kingdom
sven@dcs.bbk.ac.uk

Kappa-Join: Efficient Execution of Existential
Quantification in XML Query Languages

Matthias Brantner1⋆, Sven Helmer2, Carl-Christian Kanne1, and Guido Moerkotte1

1 University of Mannheim, Mannheim, Germany
brantner|kanne|moerkotte@informatik.uni-mannheim.de

2 Birkbeck College, University of London, London, United Kingdom
sven@dcs.bbk.ac.uk

Abstract. XML query languages feature powerful primitives for formulating
queries involving comparison expressions which are existentially quantified. If
such comparisons involve several scopes, they are correlated, and become diffi-
cult to evaluate efficiently.
In this paper, we develop a new ternary operator, called Kappa-Join, for effi-
ciently evaluating queries with existential quantification. In XML queries, a cor-
relation predicate can occur conjunctively and disjunctively. Our decorrelation
approach not only improves performance in the conjunctive case, but also allows
decorrelation of the disjunctive case. The latter is not possible with any known
technique. In an experimental evaluation, we compare the query execution times
of the Kappa-Join with existing XPath evaluation techniques to demonstrate the
effectiveness of our new operator.

1 Introduction

Almost every XML query language features a construct that allows to express an ex-
istentially quantified comparison of two node-set valued subexpressions in a concise
manner. Unfortunately, current XML query processors lack efficiency and scalability
when facing such constructs [5, 21]. The corresponding semantics resembles that of
nested and correlated subqueries, which are notoriously difficult to evaluate efficiently.
To illustrate this point, let us consider the following query: For hiring a teaching assis-
tant, we search the database for a student who took an exam that was graded better than
‘B’.

for $s in //student
let $best := //exam[grade< ’B’]/@id
let $exams := $s/examination/@id
where $exams = $best
return $s/name

Q1

Here, both sides of the
comparison in thewhere-
clause are set-valued be-
cause there are many good
students and students take
more than one exam. The

existential semantics of the XQuery general comparison operator requires that all stu-
dents are returned which have at least one exam also contained in the set$best.

A naı̈ve evaluation technique evaluates the steps in order of appearance. In Q1, this
means to reevaluate the value of$best and$exams for every iteration of the for loop,

⋆ This work was supported by the Deutsche Forschungsgemeinschaft under grant MO 507/10-1.

2

and then check for an item that occurs in both sets. This is a wasteful strategy: A closer
look at Q1 reveals that in contrast to$exams, the value of$best does not depend on
the value of$s, making the reevaluation of$best unnecessary. A common strategy
in such cases is to move the evaluation of$best out of the for loop, and to materialize
and reuse the result. However, this only alleviates the problem of repeated evaluation
of the expression to which$best is bound. To answer the query, it is still necessary to
evaluate thewhere-predicate, which is a correlated nested query due to the existential
semantics of the ’=’ operator and the fact that it refers to variables from two scopes, the
independent$best and the dependent$exams.

In this paper, we are concerned with an efficient evaluation of existentially quan-
tified correlation predicatessuch as thewhere-clause of Q1. While this area has re-
ceived some attention in the past, we show that there is stillunexploited optimization
potential for typical query patterns in XML query languages, even in simple cases like
our Query Q1. We propose the novel Kappa-Join operator that naturally fits into execu-
tion plans for quantified correlation predicates, is easy toimplement and yet features a
decorrelated evaluation algorithm.

Q1 is ”simple” because the correlation predicate occurs on its own. What if the
correlation predicates become more complex? Assume that weconsidereithergoodor
senior students to be eligible for assistantship, as in the following query:

for $s in //student
let $best := //exam[grade< ’B’]/@id
let $exams := $s/examination/@id
where $exams = $best or $s/semester>5
return $s/name

Q2

If the two clauses were
combined with and, we
could use techniques to
decorrelate queries with cor-
relation predicates that oc-
cur conjunctively. If the
clauses were not correla-
tion predicates, we could use techniques to improve performance for disjunctive predi-
cates (e.g. Bypass operators [7]). However, there is no published technique to decorre-
latedisjunctivelyoccurring correlation predicates.

Hence, we also present a Bypass variant of the Kappa-Join. This allows a decorre-
lated evaluation of disjunctively occurring correlation predicates, which has not been
accomplished for any query language so far.

The main contributions of this paper are as follows:

– We introduce the novel ternary Kappa-Join operator that, while simple to imple-
ment, can efficiently evaluate complex correlated queries where the correlation
predicate occurs conjunctively.

– We introduce a Bypass variant of the Kappa-Join that allows us to extend our tech-
nique to queries where the correlation predicate occurs in adisjunction.

– We provide experimental results, demonstrating the superiority of both the Kappa-
Join and the Bypass-Kappa-Join compared to other evaluation techniques.

The remainder of this paper is organized as follows. In the next section we discuss
basic concepts, such as dependency and correlation in XPath. In Sec. 3, we discuss the
drawbacks of existing decorrelation approaches for XML query languages. Further, we
introduce our novel Kappa-Join operator to efficiently evaluate queries with conjunctive

3

correlation. Sec. 4 investigates the case of disjunctive correlation and therefore presents
the novel Bypass Kappa-Join. In Sec. 5 we experimentally confirm the efficiency of our
approach. The last Section concludes the paper.

2 XPath Query Processing

The problems discussed in the introduction affect most existing XML query languages.
However, all of the involved issues occur even for the simpleXPath language in its first
version because it features nested predicates and existential semantics. In the following,
we limit our discussion to XPath 1.0, because peripheral topics such as typing, query
normalization, and translation into an algebraic representation can be presented in a
simpler fashion for XPath than for the more powerful XQuery language. However, all
of the techniques presented in this paper also apply for full-blown XQuery or similar
languages, as long as they are evaluated algebraically (e.g. [25]). In fact, both queries
from the introduction can be expressed in XPath syntax, as wewill see below.

2.1 Normalization

The techniques presented in this paper are mainly developedto optimize comparison
expressions with one dependent and one independent operand. To correctly identify
such expressions, the first step of our normalization is to rewrite a predicate such that
it consists of literals and the logic operators∧ and∨. Each literall consists either of
a comparison or a negation thereof, i.e.l is of the forme1θe2 or not(e1θe2), where
θ ∈ {=, <,≤, >,≥, 6=}.

One example for ”hidden” comparisons are location paths or other node-set valued
expressions when used as Boolean expressions. In such cases, we make the node-set
valued expression the argument of an auxiliaryexistsfunction and compare its result to
true, yielding a regular binary comparison expression.

Further, to provide efficient evaluation for disjunctivelyoccurring comparison ex-
pressions, the second step of our normalization separates those literals that occur in a
conjunction from those that occur disjunctively. To this end, we employ an operation
for collecting all literals that occur conjunctively: A literal l occurs conjunctively in
a predicatepk if we replace all occurrences ofl insidepk by false and the resulting
expression can be evaluated to false using Boolean simplification rules to eliminate
Boolean constants, then the original literall occurs conjunctively inpk.

2.2 Context Dependency & Correlation

In this paper, we are concerned with efficient evaluation of existentially quantified com-
parison expressions that arecorrelated. In general, correlation occurs when a variable
of a nested scope is compared with a variable from an enclosing scope. XPath does not
have variables that can be declared by the user, but we can define correlation in terms
of XPathcontexts, as follows.

Every XPath expression is evaluated with respect to a given context, which is a se-
quence ofcontext items. For our discussion, it is sufficient to use a definition of context

4

item that is slightly simpler than the original XPath context item. A context item is
a tuple with three components: thecontext node, thecontext position, and thecontext
size. In XPath, there is one global context, which must be specified as parameter of
the evaluation process. The value of some constructs depends onlocal contextsthat are
generated by other subexpressions. The constructs that refer to the local context are lo-
cation steps, relative location paths, and calls toposition() andlast(). We call
these expressionsdependentexpressions. Expressions whose value is independent of
the local context are calledindependentexpressions.

If we apply this terminology to Queries Q1 and Q2 from the introduction, given in
XPath syntax, we have

//student
| {z }

independent

[examination/@id
| {z }

dependent

= //exam[grade <′ B′]/@id
| {z }

independent

]/ name
| {z }

dependent
Q1

//student[examination/@id
| {z }

dependent

= //exam[grade <′ B′]/@id
| {z }

independent

or semester
| {z }

dependent

> 5
|{z}

indep.

]/name
Q2

We now can define the term correlation for XPath as used in the remainder of this
paper: A comparison expression with one dependent and one independent operand is
calledcorrelation predicate, because it compares a local context and an enclosing con-
text. Both example queries presented in the introduction contain correlation predicates.
A correlation predicate can occur both conjunctively and disjunctively. We call the for-
mer caseconjunctive correlationand the latterdisjunctive correlation. In Q1 there is
only one comparison expression which is a special case of conjunctive correlation, i.e.
one with only a single literal. Q2 is an example with disjunctive correlation.

3 Kappa-Join for Conjunctive Correlation

The key to an efficient evaluation of correlated queries is toavoid redundant computa-
tion, e.g. the evaluation of the inner independent expression. Such techniques are called
decorrelation techniques and have been studied extensively in the context of relational
and object-oriented systems [8, 10, 11, 17, 18, 28]. Similartechniques have been pro-
posed for the evaluation of XQuery and XPath [5, 21]. One of them is an approach that
applies decorrelation to existentially quantified comparison expressions [5]. However,
this approach is suboptimal because unnecessary duplicates are generated and must be
removed at the end of the evaluation.

The optimizations developed in this paper are presented in the form of algebraic op-
erators. Hence, we need an algebra capable of evaluating XPath. We have chosen NAL
as a perfect fit, since a translation from XPath to NAL is also available [4]. However,
our approach is not limited to NAL and the translation of XPath into it, e.g. [25].

In this section, we describe our assumptions about algebraic translation and eval-
uation in more detail. For a more elaborate treatment of these topics, please refer to
[4, 5]. We then recapitulate the decorrelation approach from [4] and discuss its draw-
backs. Afterwards, we introduce the novel Kappa-Join operator that features an efficient
decorrelation algorithm avoiding these drawbacks.

5

3.1 Algebra & Translation

The universe of the NAL algebra for XPath 1.0 is the union of the domains of the atomic
XPath 1.0 types (string, number, boolean) and the set of ordered sequences
of tuples which represent XPath contexts. Each tuple represents one context node, posi-
tion and size. Special attribute names are used to hold the context node (cn), the context
position (cp) and the context size (cs). We will provide explanations with an example
below.

The NAL algebra features well-known operators [4, 21]. All the sequence-valued
operators in the logical algebra have a corresponding implementation as aniterator [13]
in the physical algebra. In the following, we primarily needSelectionσ, theProjection
Π , the Semi-Join�, and theD-Join �−→. These operators are formally defined in our
technical report [22].

To convert XPath queries into algebraic expressions, we usethe translation intro-
duced in [4]. We briefly recapitulate the relevant part of thetranslation process by elab-
orating on the translation result for Q1 (see Fig. 1). However, we omit the translation of
subexpressions that are orthogonal to our discussion and denote them byT [e], where
e stands for any XPath expression. For instance, we denote thetranslation of the lo-
cation path//student by T [//student], its result is the sequence of context nodes
produced by the location path.

T [name]

σ

T [//student] Aexists�
T [examination/@id] T [//exam[grade <′ B′]/@id]

Fig. 1.Translation sketch for Q1

For Q1 (see Fig. 1) the algebra
expression provides a selection (σ)
for the only literal. In the subscript
(denoted by a dashed line) of this
selection, there is an Aggregation
operator that aggregates the input
sequence into a singleton sequence
with a single attribute by applying
the aggregation functionexists. It
returns true if there exists at least one tuple in the input sequence. This input sequence
stems from a Semi-Join, whose input sequences in turn stem from the two operands
of the comparison expression, i.e. the two (translated) location path expressions. For a
comparison between two node-sets, as in the particular caseof Q1, we have an existen-
tial semantics. In the equality case, this fact can be leveraged by using a Semi-Join.

3.2 Existing Decorrelation Techniques

We now recapitulate the decorrelation approach introducedin [5] and discuss its draw-
backs. Again, we take Query Q1 to illustrate this (see Fig. 1).

The fundamental idea of decorrelation is to avoid unnecessary evaluation of the
inner independent expression. In [5] this is achieved by pulling up the Semi-Join (see
Fig. 1) into the top-level algebraic expression (see Fig. 2).

This expression needs some explanations. The dependent location path is connected
to the outer expression using a D-Join (�−→). The D-Join joins each tuplet ∈ T [//student]

to all tuples returned by the evaluation of the dependent pathT [examination/@id]. For
eacht, T [examination/@id] is evaluated once, and free occurrences of variables in the

6

dependent expression are substituted with the attribute values oft, i.e. the current con-
text. At the end all resulting sequences are concatenated.3

The dependent expression, i.e. the evaluation using the D-Join, might produce du-
plicates for tuples fromT [//student], hence thetidA operator is needed to identify the
tuples resulting from the outer expression.

T [name]

ΠtidA��
−→

tidA

T [//student]

T [examination/@id]

T [//exam[grade <′ B′]/@id]

Fig. 2.Decorrelation for Query Q1

The idea is to densely num-
ber the tuples, store this number
in an attributeA, and use it later
on to perform a duplicate elimina-
tion. To do this, we introduce an
order-preserving duplicate elimina-
tion projection ΠtidA , which re-
moves multiple occurrences of the
sametid-valueA. It keeps the first
tuple for a givenA value and throws
away the remaining tuples with the same value forA.

Clearly, the main advantage of this approach is that the independent expression
is evaluated only once. In addition, if the Semi-Join’s implementation uses a custom
data structure (e.g. a hash table) to improve performance, this data structure has to be
initialized only once, compared to one initialization per student in the naı̈ve correlated
evaluation from Fig. 1. However, decorrelation comes at a price: The outer expression
produces duplicates which have to be eliminated. Below, we show how we can avoid
them using the novel Kappa-Join. Our evaluation in Sec. 5 confirms this claim.

3.3 Kappa-Join

To avoid the above-mentioned generation of duplicates, butnevertheless gain perfor-
mance by avoiding unneeded evaluations of the independent expression, we introduce
the Kappa-Join operator. It combines the advantages of the evaluation strategies from
Fig. 2 and Fig. 1 into one operator and capitalizes on efficient implementation tech-
niques.

Logical Definition The Kappa-Joinis a ternary operator, i.e. it has three argument
expressionse1, e2, ande3. It is defined by the equation

e1κ
e2

cn=cn′e3 := σAx;exists(e2�cn=cn′e3)
(e1)

wherecn is the context node resulting from the evaluation ofe2 andcn′ the context
node frome3. As for conventional join operators, we denote the first and last producer
expressions asouter producerand inner producer, respectively. The second producer
expressione2 (in the superscript) is calledlink producerbecause it acts as a link between
the outer and inner producer within the join predicate. The outer expressione1 and the

3 In [25] this operator is called MapConcat.

7

inner expressione3 are independent expressions, i.e. they do not depend on any of the
Kappa-Join’s other arguments. In contrast, the expressione2 is dependent one1.

Informally, the result sequence of the operator contains all tuples from the outer
producer (e1) for which there exists at least one tuple in the link producer (e2), when
evaluated with respect to the current tuple ofe1, that satisfies the predicatep which is a
comparison from attributes ofe2 and attributes of the the inner producer (e3).

Translation with Kappa-Join There exist two alternatives to incorporate the Kappa-
Join into an algebraic plan: (1) The Kappa-Join’s definitionmatches the pattern that
results from the canonical translation of correlation predicates, such as the Selection op-
erator in Fig. 1. Hence, the Kappa-Join can replace this pattern directly after translation.
(2) The other alternative is to modify the translation procedure such that a Kappa-Join
is used for conjunctive correlation predicates.

T [name]

κ
T [examination/@id]
=

T [//student] T [//exam[grade <′ B′]/@id]

Fig. 3.Query Q1 with Kappa-Join

Because our experiments (see
Sec. 5) show that the Kappa-
Join always dominates the canon-
ical approach and it simplifies
the translation procedure, we have
chosen the second alternative.Fig. 3
contains the resulting algebra ex-
pression for Q1. Here, the outer
producer of the Kappa-Join is mapped to the location path//student. The link pro-
ducer is the dependent inner location pathexamination/@id, and the inner pro-
ducer is the independent expression//exam[grade<’B’]/@id.

OPEN

1 while T ← INNERPRODUCER.NEXT

2 do HASHTABLE .INSERT(T)

NEXT

1 while T1 ← OUTERPRODUCER.NEXT

2 do
3 LINK PRODUCER.OPEN(T1)
4 while T2 ← L INK PRODUCER.NEXT

5 do
6 if HASHTABLE .LOOKUP(T2)
7 then
8 LINK PRODUCER.CLOSE

9 return T1

10
11 LINK PRODUCER.CLOSE

12 return nil

Fig. 4.Pseudocode for the Kappa-Join

Implementation The secret of the Kappa-
Join lies in its simple, yet efficient imple-
mentation, which improves its performance
beyond that of the operator combination in
its logical definition. Fig. 4 shows the pseu-
docode for the implementation of the Kappa-
Join as an iterator [13].

In its open method, the Kappa-Join
builds a data structure, e.g. a hash-table, con-
taining the attributes from the inner producer
that are part of the join predicate. In its next
method, the Kappa-Join initializes the link
producer for every tupleT1 from its outer pro-
ducer. Like a Semi-Join, it then probes the
hash table with tuplesT2 from the link pro-
ducer until a matching one is found, and re-

turns the outer tuple as soon as it finds a match. The Kappa-Join does not always enu-
merate all tuples from the dependent link producer, while atthe same time only building
the hash table once.

8

Compared to the algebra plan from Fig. 2, the plan in Fig. 3 using the Kappa-Join
has three main advantages: (1) it avoids to enumerate all tuples from the link producer
because it immediately returns a result if one match is found(see Line 9). (2) It does not
produce duplicates of tuples from the outer producer because the result contains at most
one tuple fromT [//student], and (3) consequently saves the cost of a final duplicate
elimination. These effects combine to yield the speedup that can be achieved.

4 Kappa-Join for Disjunctive Correlation

In the previous section we demonstrated how complex correlation predicates that oc-
cur in a conjunction can be evaluated efficiently. However, as shown in our Example
Q2, correlation predicates can also occur disjunctively. Several optimization techniques
for queries containing noncorrelated disjunctive predicates have been proposed [6, 7,
16]. One of them is the Bypass technique [7] that is used to avoid unnecessary eval-
uation. However, to the best of our knowledge, nobody has shown how to decorrelate
disjunctively occurring correlation predicates. In this section, we show how this can be
achieved.

4.1 Problem

T [name]

σ

T [//student] orAexists�
T [examination/@id] T [//exam[...]/@id]

T [semester > 5]

Fig. 5.Translation sketch for Q2

Consider the canonical algebra plan for
Query Q2 (see Fig. 5). This algebra ex-
pression is similar to the one presented in
Fig. 1 for Q1, except for theor function
call in the subscript of the Selection. Dis-
junctively occurring literals are translated
using anor function call. It evaluates to
true if either of its producer expressions
does.

The pattern used for the correlation
predicate does not match the definition of
the Kappa-Join because of the extra literal. Hence, we cannot proceed as for Query
Q1. The only technique currently available to improve the canonical plan is the so-
called shortcut evaluation of the disjunction, which meansthat we can avoid evalua-
tion of the expensive correlation predicate for those students where the cheaper literal
semester > 5 is true. Below, we recall the Bypass technique which does exactly that.

4.2 Bypass Technique

The Bypass technique was used to prevent the unnecessary evaluation of predicates that
occur disjunctively [7]. For this, the Bypass technique adds a new class of operators
to the conventional algebra. In contrast to regular operators Bypass operators havetwo
output sequences. The first sequence contains the tuples that qualify for the operator’s
predicate. The second sequence consists of those tuples that do not qualify the oper-
ator’s predicate. The two disjoint sequences are calledtrue- and false-sequence. The

9

existing Bypass technique provides a Bypass Selection, a Bypass Join and a Bypass
Semi-Join [7]. For the purpose of this paper, we only need theBypass Selection.

Consider as a first example the algebra representation of Q2 extended by a Bypass
Selection operator (σ±) for evaluating the cheaper predicatesemester > 5. The result-
ing plan is shown in Fig. 6. Here and in the following, the false-sequence is indicated
by dotted lines. The evaluation according to this plan starts with computing all result
tuples for the outer expression (//student).

T [name]

.
∪

σ±

T [//student] T [semester > 5]

σAexists�=

T [examination/@id]

T [//exam[...]/@id]

Fig. 6.Q2 with Bypass Selection

The Bypass Selection divides
these tuples into two disjoint se-
quences. The true-sequence con-
tains the students that fulfill the
predicatesemester > 5. Accord-
ingly, the false-sequence con-
tains the tuples that fail this pred-
icate. The tuples of both se-
quences form two separate paths
which are merged by

.
∪. The

tuples from the false-sequence
must pass the second Selection
operator computing the complex correlation predicate. This operator is responsible for
filtering out those tuples that do not qualify for any of the two predicates. The two se-
quences are disjoint. Hence, no duplicate elimination is required by

.
∪. However, as the

XPath semantics requires its result to be in document order,a merge as in merge-sort
may be required. This can be done, for example, by numbering the tuples before use
or use node ids if they represent order. The final processing of T [name] completes the
result.

Looking at Fig. 6, we are in for a surprise: The Bypass Selection we introduced to
allow shortcut evaluation of the disjunction made the Kappa-Join pattern reappear! We
discuss in the following subsection how to leverage this fordecorrelation of disjunctive
queries with a single correlation predicate.

4.3 Kappa-Join for a Single Disjunctive Correlation Predicate

T [name]

.
∪

σ±

T [//student] T [semester > 5]

κ
T [examination/@id]
=

T [//exam[...]/@id]

‘

Fig. 7.Q2 with Bypass Selection and Kappa-Join

Query Q2 contains a single corre-
lation predicate within a disjunc-
tion. Bypass plans have the ad-
vantage that the expression in the
false-sequence can be optimized
separately. In general, whenever
there is only a single correlation
predicate per disjunction we can
apply decorrelation. As seen in
Fig. 6, we can again recognize the
pattern that allows us to integrate the Kappa-Join for the conjunctive case. In the false-
sequence of Fig. 6, we can use the Kappa-Join, yielding the expression shown in Fig. 7.

10

In this case, the plan takes advantage of both: (1) shortcut evaluation of the liter-
als connected by disjunction, and (2) decorrelation of correlation predicates allowing
efficient execution if the cheaper predicate in the disjunction fails.

4.4 Kappa-Join for Multiple Disjunctive Correlation Predi cates

We have seen that the Bypass technique facilitates decorrelation if there is only one
correlation predicate in the disjunction. Unfortunately,if there is more than one, we
are again at a loss. Consider as an example the following Query Q3. In addition to the
good students, we also want to query the database for students that have already been a
teaching assistant for a given lecture.

//student[examination/@id= //exam[grade< ’B’]/@id or
@id = //lecture[title=’NCT’]/helpers/helper/@student]/name

Q3

T [name]

.
∪

ΠtidA�±
=�

−→

tidA

T [//student]

T [examination/@id]

T [//exam[. . .]/@id]

κ
T [@id]
=

T [//lecture[...]/.../@student]

Fig. 8. Incorrect decorrelated bypass plan for Q3

We would like to decor-
relate both correlation pred-
icates. At first glance, it
is tempting to apply the
decorrelation strategy that
was discussed in Sec. 3.2.
Fig. 8 shows an algebra
expression for Q3 apply-
ing this technique, but us-
ing a Bypass Semi-Join in-
stead of a regular Semi-
Join. However, this ap-
proach is not feasible. The
first D-Join on the leftmost

branch of the plan eliminates those items produced by//student for which the depen-
dent expressionexmination/@id produces an empty result. If we have a conjunctive
query, this is no problem.

T [name]

.
∪

κ
±,T [examination/@id]
=

T [//student] T [//exam[...]/@id]

κ
T [@id]
=

T [//lecture[...]/.../@student]

Fig. 9. Bypass plan sketches for Q2 with Kappa-Join

However, the//student
items failing the first dis-
junct could still qualify for
the second disjunct, and
dropping them as in Fig. 8
produces an incorrect result.
Note that the Bypass Semi-
Join does not help: it comes
too late. Problems of this
kind are often solved by us-
ing an outer join, or in this
case outer D-Join. However,
this would still require du-
plicate elimination ontidA as shown in the true-sequence.

11

It turns out that we can do much better by applying theBypass Kappa-Join. As every
bypass operator, the Bypass Kappa-Join has two result sequences. The true-sequence is
the same as for the regular Kappa-Join. The tuples in the false-sequence are the ones
from the outer producer for which there was no match in the inner producer or for which
the link producer returned an empty result.

In the false-stream, we now have our familiar pattern and canemploy the decorre-
lation strategy as if the correlation predicate was a singlecorrelation predicate. Fig. 9
shows the result. This plan finally has everything we want: (1) the evaluation of both
correlation predicates can be done in a decorrelated fashion, (2) the Kappa-Join avoids
unneeded duplicate generation and elimination for both correlation predicates, and (3)
we have shortcut evaluation and only evaluate the second correlation predicate if the
first fails.

5 Evaluation

To show the effectiveness of our approach, we ran experiments with different XPath
evaluation engines against our canonical and optimized approaches. Additionally, we
performed measurements that compare the existing decorrelation strategy against the
new Kappa-Join operator. We chose the freely available engines

– Xalan C++ 1.8.0 using Xerces C++ version 2.6.0,
– Saxon for Java 8.7.1,
– Berkeley DB XML 2.0.9 (DBXML) using libpathan 1.99 as XPath engine,
– MonetDB 4.8.0 using MonetDB-XQuery-0.8.0,
– the evaluator provided by the XMLTaskForce [19] (XTF), and
– Natix [9] for the execution of the canonical, decorrelated (ICDE06 [5]), and Kappa-

Join plans.

5.1 Environment

The environment we used to perform the experiments consisted of a PC with an Intel
Pentium 4 CPU at 2.40GHz and 1 GB of RAM, running Linux 2.6.11-smp. The Natix
C++ library was compiled with gcc 3.3.5 with optimization level 2.

For Xalan, Saxon, and XTF we measured the net time toexecutethe query. The
time needed to parse the document and generate the main memory representation is
subtracted from the elapsed evaluation time. For the evaluation of MonetDB, Berkeley
DB XML and Natix, we imported the documents into the database. The time needed
for this is not included in the execution times. The queries were executed several times
with an empty buffer pool and without any indexes.

Documents We generated two different sets of documents. The first set isused for the
example queries Q1-Q3 used throughout this paper. These documents were generated
using the ToXgene data generator [1]4. The smallest document contains 50 employ-
ees, 100 students, 10 lectures and 30 exams. With each document we quadrupled these

4 The DTD as well as the generator template file are listed in theappendix of a technical report.

12

numbers. That is, the biggest document contains 51200 employees, 102400 students,
10240 lectures and 30720 exams. This led to moderate document sizes between 59kB
and 43MB.

The second set is used for the comparison of the existing decorrelation strategy and
the new Kappa-Join operator. We generated seven document structured according th the
following template:

<?xml version=’1.0’?>
<gen>
<e1 id=’0’> <e2 id=’0’/> ... i-e2 nodes <e2 id=’i’/> </e1>

...
<e1 id=’0’> <e2 id=’0’/> ... i-e2 nodes <e2 id=’i’/> </e1>
<e3 id=’RandomNumber’/>
</gen>

Each of the documents contains 1000e1 nodes and 1000e3 nodes. For each docu-
ment we varied the number ofe2 nodes (under ane1 node) between 10 and 500 nodes.
This gave us documents between 252kB and 13M.

QueryName Figure
Q1 decorr Fig. 2

kappa Fig. 3
Q2 bypass Fig. 6

kappa Fig. 7
Q3 bypasskappaFig. 9

Fig. 10.Query Evaluation Plans

Queries We executed performance mea-
surements for all example queries (Q1,
Q2, and Q3) presented throughout this pa-
per. For Natix, we generated several dif-
ferent query evaluation plans for each of
the queries. For each of the queries we
generated the canonical plan as specified
in [4]. For example, Fig. 1 shows the
plans for Q1. Further, we generated plans
incorporating our optimization strategies.
Fig. 10 gives a mapping from names for
optimized query evaluation plans to figures that illustratethe techniques used.

Additionally, we executed performance measurements that compare the existing
decorrelation strategy with our Kappa-Join operator. Therefore, we executed the fol-
lowing query on the synthetic data set:

/gen/e1[e2/@id = /gen/e3/@id] Q4

5.2 Results and Interpretation

Fig. 11 contains the results of our performance measurements (elapsed time in seconds).
The best execution time(s) for each column in all tables are printed in bold face. Those
that did not finish within 6 hours are marked by DNF (did not finish). For MonetDB the
evaluation of some queries ran out of memory on bigger documents. These cases are
denoted by OOM.

Subfigures 11(a), 11(b), and 11(c) show the execution times for Q1, Q2, and Q3,
respectively. For all queries on all documents, our decorrelated approach performs and

13

Documents
Evaluator 1 2 3 4 5 6
Xalan 0.30 0.38 6.17 95.6 1552 DNF
DBXML 0.07 0.66 11.6 336 DNF DNF
MonetDB 0.31 0.38 2.05 36.1 OOM OOM
Saxon 0.21 0.28 0.53 1.49 11.14 141
XTF 0.40 4.72 82.8 DNF DNF DNF
Natix
•canonical 0.25 2.62 38.2 583 9637 DNF
•decorr 0.02 0.03 0.06 0.19 0.75 2.99
•kappa 0.02 0.03 0.06 0.19 0.75 2.88

(a) Query Q1

Documents
Evaluator 1 2 3 4 5 6
Xalan 0.02 0.23 3.63 54.7 893 12453
DBXML 0.06 0.39 6.87 207 DNF DNF
MonetDB 0.25 0.36 2.02 36.2 OOM OOM
Saxon 0.22 0.30 0.62 1.44 7.82 85.4
XTF 0.76 8.60 9180 DNF DNF DNF
Natix
•canonical 0.16 1.64 20.9 333 5598 DNF
•bypass 0.16 1.59 20.7 323 5436 DNF
•kappa 0.03 0.05 0.16 0.60 2.51 9.91

(b) Query Q2

Documents
Evaluator 1 2 3 4 5 6
Xalan 0.06 0.75 12.6 199 3201 DNF
DBXML 0.30 1.61 30.2 4057 DNF DNF
MonetDB 0.31 0.50 3.29 62.9 OOM OOM
Saxon 0.20 0.28 0.54 1.48 10.9 138
XTF 0.48 5.14 94.8 DNF DNF DNF
Natix
•canonical 0.37 3.49 DNF DNF DNF DNF
•bypasscanonical0.37 3.43 48.1 749 12492 DNF
•bypasskappa 0.02 0.04 0.10 0.35 1.44 5.91

(c) Query Q3
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300 350 400 450 500
T

im
e

(s
)

Number of inner nodes

Decorrelation
Kappa-Join

(d) ICDE06 vs. Kappa-Join (Q4)

Fig. 11.Performance measurements

scales best. Especially for the disjunctive queries Q2 and Q3, the performance of all
other approaches drops considerably when executed on bigger documents. In contrast,
our plans containing the Kappa-Join (Q2) and Bypass Kappa-Join (Q3) almost scale
linearly with the size of the document.

For Q1 the execution times of the existing decorrelation approach (called ICDE06 [5])
behave similar to those of the Kappa-Join. This is because all students took very few
exams, i.e. only between one and three. For this reason, we compared those two strate-
gies on the synthetic data set. Subfigure 11(d) contains a comparison between the two
strategies. The execution times of the existing decorrelation strategy grow linearly with
the number ofe2 nodes pere1 node. This is because it has to enumerate alle2 nodes
and finally perform a duplicate elimination on the appropriate e1 nodes. The execu-
tion times of the Kappa-Join operator almost scale linearlywith the document size.
The Kappa-Join does not need to enumerate alle2 nodes and saves the cost of a final
duplicate elimination.

6 Related Work

Work on XPath evaluation falls into three general categories. In the first category, we
have main memory interpreters like Xalan, XSLTProc, and [12]. Clearly, these ap-
proaches do not scale well. In the second category, we find work where XML is shred-
ded into relational systems and XPath is evaluated on this shredded representation. In
this category we find approaches like Pathfinder [3]. The problem with this approach

14

are the numerous joins that have to be executed. Finally, thethird category uses a native
(tree) algebraic approach. Here, we find SAL [2], TAX [15], yet another algebra [27],
and [4]. None of the approaches in any of three classes performs decorrelation.

There are, however, special techniques such as avoiding unnecessary ordering op-
erations [14], schema-based optimization [20], and replacing reverse axes [24]. These
techniques are orthogonal to our technique.

In the relational and object-oriented context decorrelation has been studied exten-
sively [8, 10, 11, 17, 18, 28]. Similar techniques have been proposed for the evaluation
of XQuery and XPath [5, 21]. Gottlob et.al [12] also proposedan approach that avoids
multiple evaluations of XPath expressions.

Several optimization techniques for queries containing disjunctive predicates have
been proposed [6, 7, 16]. One of them is the Bypass technique [7] which we extend with
support for decorrelation. Because bypass operators have two output streams, which are
unioned later, the resulting expression forms a directed acyclic graph (DAG). Strategies
for implementing Bypass operators and query evaluation engines that support DAG-
structured query plans can be found in [7, 23, 26].

7 Conclusion

We demonstrate how to efficiently evaluate XML queries featuring existentially quanti-
fied correlation predicates. To this end, we have introducedthe novel Kappa-Join opera-
tor that naturally fits into algebraic execution plans for quantified correlation predicates.
It is simple to implement and yet highly efficient. However, if disjunctions come into
play,all known decorrelation techniques fail. By injecting the Kappa-Join with the By-
pass technique, we are also able to perform decorrelated evaluation if the correlation
predicate occurs in a disjunction. All other approaches cannot evaluate such a case effi-
ciently. Our performance measurements show that the Kappa-Join outperforms existing
approaches by up to two orders of magnitude.

AcknowledgmentsWe would like to thank Simone Seeger for her comments on the
manuscript.

A Logical Operator Definitions

Order plays a crucial role in the semantics of XPath, and NAL is an algebra on se-
quences. This fact has important implications on properties of the algebra (e.g. commu-
tativity) that are relevant for optimizations (see [21] foran example). Hence, we give
the formal definitions of all operators used throughout thispaper. We start with some
notations and afterwards provide the formal definitions of the operators and bypass op-
erators.

A.1 Notation

A sequence-valued expressione results in several tuples with the same attributesA(e).
The attributes of a single tuplet are also referred to asA(t). Tuple and function con-
catenation are denoted by◦. The set of free variables of an expressione is defined as

15

F(e). For an expressione possibly containing free variables, and a tuplet, we denote
by e(t) the result of evaluatinge where bindings of free variables are taken from at-
tribute bindings provided byt. Of course this requiresF(e) ⊆ A(t). The concatenation
of tuples is denoted by◦.

For sequencese we useα(e) to denote the first element of a sequence. The function
τ retrieves the tail of a sequence and⊕ concatenates two sequences. We denote the
empty sequence byǫ.

A.2 Algebra Definitions

In the following, we provide the formal definitions of the operators used throughout this
paper.

The Selection selects qualifying tuples according to predicatep:

σp(e) :=

{

α(e) ⊕ σp(τ(e)) if p(α(e))
σp(τ(e)) else.

Aggregates its input sequencee into a singleton sequence with a single attributea
by applying the aggregation functionf :Aa;f (e) := {[a : f(e)]}

Within the Semi-Join the predicatep checks for tuple existence ine2 to decide on
including tuple ine1:

e1 �p e2 :=

{

α(e1) ⊕ (τ(e1) �p e2) if ∃x ∈ e2 p(α(e1) ◦ x)
τ(e1) �p e2 else

The D-Join joins each tupleti in e1 to all tuples ine2, which depend onti:

e1�−→e2 := α(e1)×e2(α(e1)) ⊕ τ(e1)�−→e2.

where

e1×e2 :=

{

ǫ if e2 = ǫ
(e1 ◦ α(e2)) ⊕ (e1×τ(e2)) else.

with F(e2) ∩ A(e1) 6= ∅.
Thetid operators densely numbers the tuples, and stores this number in an attribute

A. It is defined as follows:

tidA(e) := α(e) ◦ [A : pos] ⊕ tidA(τ(e)).

The Tid-Duplicate Elimination is an order preserving duplicate elimination. It keeps
the first tuple for a givenA value and throws away the remaining tuples with the same
value forA.

ΠtidB

A (e) :=

{

α(e)|A ⊕ ΠtidB

A (τ(e)) if α(e).B 6∈ ΠB(τ(e))

ΠtidB

A (τ(e)) else

16

A.3 Bypass Algebra Definitions

In order to ease the formal description for the bypass operators, their definitions come
in two halves. The bypass selection, denoted byσ±, is divided into the part yielding the
true-sequenceσ+ and the half yielding the false-sequenceσ−.

σ+
p (e) := α(e) ⊕ σp(τ(e)) if p(α(e))

σ−p (e) := α(e) ⊕ σp(τ(e)) if not p(α(e))

The Bypass Kappa-Join operator (e1κ
±;e2
p e3) is defined in terms of the Bypass Se-

lection and also comes in two halves:

e1κ
+;e2

p e3 := σ+Ax;exists(e2�pe3)
(e1)

e1κ
−;e2

p e3 := σ−Ax;exists(e2�pe3)
(e1)

B Translation of XPath to NAL

A location stepsi may contain an arbitrary numberh of predicatespk and has the
general formai :: ti[p1] . . . [ph]. The pattern for translating [4] a location stepai ::
ti[p1] . . . [ph] with predicates is

Φ[ph] ◦ · · · ◦ Φ[p1] ◦ T [ai :: ti]

whereΦ is an auxiliary translation function for predicates, returning a filtering func-
tor which operates on algebraic expressions.

Within each predicate our normalization already collectedthose literals that occur
conjunctively. Translating a predicate that contains all conjunctively occuring literals
pk = lk1∧· · ·∧lkmk

that do not include positional clauses simply results in a translation
into Selection operators:

Φ[lk1 ∧ · · · ∧ lkmk
] := σT [lkmk

] ◦ · · · ◦ σT [lk1]

After the semantic analysis all clauses are broken down intofunction calls:lkj =
f1 ◦ · · · ◦ fr. For example,or, not, and comparisons are all evaluated by function
calls. All disjunctively occuring literals are also translated using Selection operators.
However, they have theor function calls as subscript. It is translated straightforward

T [or(e1, . . . , en)] := or(T [e1], . . . , T [en])

For the special case of comparisons between two node-sets, as in the particular case
of Q1 and Q2, the XPath semantics specifies existential semantics. In the (in)equality
case, this fact can be leveraged by using a Semi-Join. More formally, the translation
function [4] for a comparison operation∈ {=, 6=} between two node-sets into NAL is
defined as

T [e1θe2] := Ax;exists(T [e1]�cnθcn′ ΠD
cn′:cn(T [e2]))

17

References

1. D. Barbosa, A. Mendelzon, J. Keenleyside, and K. Lyons. ToXgene: a template-based data
generator for XML. InProceedings of the ACM Sigmod, Madison, USA, 2002.

2. C. Beeri and Y. Tzaban. SAL: An algebra for semistructureddata and XML. InWebDB
(Informal Proceedings), pages 37–42, 1999.

3. P. A. Boncz, T. Grust, S. Manegold, J. Rittinger, and J. Teubner. Pathfinder: Relational
xquery over multi-gigabyte XML inputs in interactive time.Technical Report INS-E0503,
CWI, March 2005. MonetDB 4.8.0, Pathfinder 0.8.0.

4. M. Brantner, S. Helmer, C-C. Kanne, and G. Moerkotte. Full-fledged Algebraic XPath Pro-
cessing in Natix. InProceedings of the ICDE Conference, Tokyo, Japan, pages 705–716,
2005.

5. M. Brantner, C-C. Kanne, S. Helmer, and G. Moerkotte. Algebraic optimization of nested
xpath expressions. InProceedings of the ICDE Conference, Atlanta, page 128, 2006.

6. F. Bry. Towards an efficient evaluation of general queries: quantifier and disjunction process-
ing revisited. InProceedings of ACM SIGMOD Conference, Oregon, USA, pages 193–204,
1989.

7. J. Claußen, A. Kemper, G. Moerkotte, K. Peithner, and M. Steinbrunn. Optimization and
evaluation of disjunctive queries.IEEE Trans. Knowl. Data Eng., 12(2):238–260, 2000.

8. U. Dayal. Of nests and trees: A unified approach to processing queries that contain nested
subqueries, aggregates, and quantifiers. InProceedings of the VLDB Conference, Brighton,
England, pages 197–208, 1987.

9. T. Fiebig, S. Helmer, C-C. Kanne, G. Moerkotte, J. Neumann, R. Schiele, and T. Westmann.
Anatomy of a native XML base management system.VLDB Journal, 11(4):292–314, 2002.

10. C. Galindo-Legaria and M. Joshi. Orthogonal optimization of subqueries and aggregation.
In Proceedings of ACM SIGMOD Conference, Santa Barbara, USA, pages 571–581, 2001.

11. R. A. Ganski and H. K. T. Wong. Optimization of nested sql queries revisited. InProceedings
of the ACM SIGMOD, San Francisco, California, pages 23–33. ACM Press, 1987.

12. G. Gottlob, C. Koch, and R. Pichler. XPath query evaluation: Improving time and space
efficiency. InProceedings of the ICDE Conference, Bangalore, India, pages 379–390, 2003.

13. Goetz Graefe. Query evaluation techniques for large databases.ACM Computing Surveys,
25(2):73–170, 1993.

14. J. Hidders and P. Michiels. Avoiding unnecessary ordering operations in xpath. InProceed-
ings of the DBPL Conference, Potsdam, Germany, pages 54–70, 2003.

15. H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava, and K.Thompson. Tax: A tree algebra
for xml. In Prcoceedings of the DBPL Conference, Frascati, Italy, pages 149–164, 2001.

16. M. Jarke and J. Koch. Query optimization in database systems. ACM Computing Surveys,
16(2):111–152, June 1984.

17. W. Kiessling. SQL-like and Quel-like correlation queries with aggregates revisited. ER-
L/UCB Memo 84/75, University of Berkeley, 1984.

18. W. Kim. On optimizing an SQL-like nested query.j-TODS, 7(3):443–469, September 1982.
19. C. Koch. XMLTaskForce XPath evaluator, 2004. Released 2004-09-30.
20. A. Kwong and M. Gertz. Schema-based Optimization of XPath Expressions. Technical

report, University of California Davis, 2002.
21. N. May, S. Helmer, and G. Moerkotte. Nested queries and quantifiers in an ordered context.

In Proceedings of the ICDE Conference, Boston, MA, USA, pages 239–250, 2004.
22. M.Brantner, S.Helmer, C-C. Kanne, and G. Moerkotte. Kappa-join: Efficient execution of

existential quantification in xml query languages. Technical report, University of Mannheim,
2006.

18

23. T. Neumann.Efficient Generation and Execution of DAG-Structured QueryGraphs. PhD
thesis, University of Mannheim, 2005.

24. D. Olteanu, H. Meuss, T. Furche, and F. Bry. Xpath: Looking forward. InXML-Based Data
Management and Multimedia Engineering Workshops XMLDM, MDDE, and YRWS, Prague,
Czech Republic, pages 109–127, 2002.

25. C. Re, J. Siméon, and M. F. Fernández. A complete and efficient algebraic compiler for
xquery. InProceedings of the ICDE Conference, Atlanta, USA, page 14, 2006.

26. P. Roy. Optimization of DAG-structured query evaluation plans. Master’s thesis, Indian
Institute of Technology, Bombay, 1998.

27. C. Sartiani and A. Albano. Yet another query algebra for xml data. InProceedings of the
IDEAS Conference, Edmonton, Canada, pages 106–115, 2002.

28. P. Seshadri, H. Pirahesh, and T. Y. Cliff Leung. Complex query decorrelation. InProceedings
of the ICDE Conference, New Orleans, USA, pages 450–458, 1996.

