Skip to main content

Comparing the Niches of CMA-ES, CHC and Pattern Search Using Diverse Benchmarks

  • Conference paper
Parallel Problem Solving from Nature - PPSN IX (PPSN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4193))

Included in the following conference series:

  • 2222 Accesses

Abstract

This paper explores two questions: 1) On a relatively difficult and varied set of test problems, can we observe differences in evolutionary search algorithm performance related to problem features? 2) How do the evolutionary algorithms compare to Pattern Search algorithms, a more traditional optimization tool popular in the larger scientific community? The results suggest there are consistent differences in algorithm performance that can be related back to problem features. Some new ideas for the construction of benchmark problems are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Audet, C., Dennis Jr., J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM Journal on Optimization 17(1), 188–217 (2006)

    Article  MathSciNet  Google Scholar 

  2. Eshelman, L.J.: The CHC adaptive search algorithm. In: Foundations of Genetic Algorithms, pp. 265–283. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  3. Hansen, N., Kern, S.: Evaluating the cma evolution strategy on multimodal test functions. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 282–291. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2), 159–195 (2001)

    Article  Google Scholar 

  5. Schaffer, J.D., Eshelman, L.: Real-Coded Genetic Algorithms and Interval Schemata. In: Foundations of Genetic Algorithms, vol. 2, Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  6. Lunacek, M., Whitley, D.: The dispersion metric and cma algorithm. In: GECCO, ACM Press, New York (2006)

    Google Scholar 

  7. Mathias, K., Whitley, D., Kusuma, T., Stork, C.: An Empirical Evaluation of Genetic Algorithms on Noisy Objective Functions. In: Genetic Algorithms for Pattern Recognition, pp. 65–86. CRC Press, Boca Raton (1996)

    Google Scholar 

  8. Mühlenbein, H., Schlierkamp-Voosen, D.: Predictive Models for the Breeder Genetic Algorithm. Evolutionary Computation 1(1), 25–49 (1993)

    Article  Google Scholar 

  9. Salomon, R.: Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. BioSystems 39, 263–278 (1996)

    Article  Google Scholar 

  10. Torczon, A.: On the convergence of pattern search algorthims. SIAM Journal on Optimization 7(1), 1–25 (1997)

    Article  MathSciNet  Google Scholar 

  11. Whitley, D., Rana, S.B., Dzubera, J., Mathias, K.E.: Evaluating evolutionary algorithms. Artificial Intelligence 85(1-2), 245–276 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Whitley, D., Lunacek, M., Sokolov, A. (2006). Comparing the Niches of CMA-ES, CHC and Pattern Search Using Diverse Benchmarks. In: Runarsson, T.P., Beyer, HG., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds) Parallel Problem Solving from Nature - PPSN IX. PPSN 2006. Lecture Notes in Computer Science, vol 4193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11844297_100

Download citation

  • DOI: https://doi.org/10.1007/11844297_100

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38990-3

  • Online ISBN: 978-3-540-38991-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics