Abstract
This paper explores two questions: 1) On a relatively difficult and varied set of test problems, can we observe differences in evolutionary search algorithm performance related to problem features? 2) How do the evolutionary algorithms compare to Pattern Search algorithms, a more traditional optimization tool popular in the larger scientific community? The results suggest there are consistent differences in algorithm performance that can be related back to problem features. Some new ideas for the construction of benchmark problems are also introduced.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Audet, C., Dennis Jr., J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM Journal on Optimization 17(1), 188–217 (2006)
Eshelman, L.J.: The CHC adaptive search algorithm. In: Foundations of Genetic Algorithms, pp. 265–283. Morgan Kaufmann, San Francisco (1991)
Hansen, N., Kern, S.: Evaluating the cma evolution strategy on multimodal test functions. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 282–291. Springer, Heidelberg (2004)
Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2), 159–195 (2001)
Schaffer, J.D., Eshelman, L.: Real-Coded Genetic Algorithms and Interval Schemata. In: Foundations of Genetic Algorithms, vol. 2, Morgan Kaufmann, San Francisco (1993)
Lunacek, M., Whitley, D.: The dispersion metric and cma algorithm. In: GECCO, ACM Press, New York (2006)
Mathias, K., Whitley, D., Kusuma, T., Stork, C.: An Empirical Evaluation of Genetic Algorithms on Noisy Objective Functions. In: Genetic Algorithms for Pattern Recognition, pp. 65–86. CRC Press, Boca Raton (1996)
Mühlenbein, H., Schlierkamp-Voosen, D.: Predictive Models for the Breeder Genetic Algorithm. Evolutionary Computation 1(1), 25–49 (1993)
Salomon, R.: Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. BioSystems 39, 263–278 (1996)
Torczon, A.: On the convergence of pattern search algorthims. SIAM Journal on Optimization 7(1), 1–25 (1997)
Whitley, D., Rana, S.B., Dzubera, J., Mathias, K.E.: Evaluating evolutionary algorithms. Artificial Intelligence 85(1-2), 245–276 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Whitley, D., Lunacek, M., Sokolov, A. (2006). Comparing the Niches of CMA-ES, CHC and Pattern Search Using Diverse Benchmarks. In: Runarsson, T.P., Beyer, HG., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds) Parallel Problem Solving from Nature - PPSN IX. PPSN 2006. Lecture Notes in Computer Science, vol 4193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11844297_100
Download citation
DOI: https://doi.org/10.1007/11844297_100
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38990-3
Online ISBN: 978-3-540-38991-0
eBook Packages: Computer ScienceComputer Science (R0)