Skip to main content

Optimisation of CDMA-Based Mobile Telephone Networks: Algorithmic Studies on Real-World Networks

  • Conference paper
Parallel Problem Solving from Nature - PPSN IX (PPSN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4193))

Included in the following conference series:

  • 2157 Accesses

Abstract

CDMA and WCDMA mobile phone networks depend on a network of antennae, each defining a geographic ‘cell’ that handles the transmissions to and from users’ handsets within that cell. These antennae have adjustable settings whose values have a large effect on both quality of service (and consequent subscriptions) and resource consumption. We consider the optimisation of these parameters, and describe experiments that compare a range of optimisation algorithms with the methods currently used in the field for this purpose. The aim of the current project was to achieve faster (necessary) and better (if possible) results than the existing methods used by field engineers. We find that certain evolutionary algorithm configurations achieve both of these requirements on test problems arising from real data from a high-traffic urban environment. To some extent the ideal algorithm depends on the size and load in the network being optimised, and this is the main topic of ongoing research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bedakar, A., Borst, S., Ramanan, K., Whiting, P., Yeh, E.: Downlink scheduling in CDMA data networks. In: Proc. Global Telecomms. Conf., GLOBECOM 1999, vol. 5, pp. 2653–2657 (1999)

    Google Scholar 

  2. Moustafa, M., Habib, I., Naghshineh, M.: Wireless resource management using genetic algorithm for mobiles equilibrium. In: Proc. 6th IEEE Symp. on Computers and Comms., pp. 586–591 (2001)

    Google Scholar 

  3. Akl, R.G., Hegde, M.V., Naraghi-Pour, M., Min, P.S.: Multicell CDMA network design. IEEE Transactions on Vehicular Technology 50(3), 711–722 (2001)

    Article  Google Scholar 

  4. Chen, S., Luk, B.L.: Adaptive simulated annealing for optimization in signal processing applications. Signal Processing 79(1), 117–128 (1999)

    Article  Google Scholar 

  5. Lee, C.Y., Kang, H.G.: Cell planning with capacity expansion in mobile communications: a tabu search approach. IEEE Transactions on Vehicular Technology 49(5), 1678–1691 (2000)

    Article  Google Scholar 

  6. Maple, C., Guo, L., Zhang, J.: Parallel Genetic Algs. for Third Generation Mobile Network Planning. In: Proc. Int’l. Conf. on Parallel Comp. in Elec. Eng (PARELEC 2004), pp. 229–236 (2004)

    Google Scholar 

  7. Love, R.T., Beshir, K.A., Schaeffer, D., Nikides, R.S.: A pilot optimization technique for CDMA cellular systems. In: Proc. 50th IEEE VTS Vehicular Technology Conf., vol. 4, pp. 2238–2242 (1999)

    Google Scholar 

  8. Sinclair, M.: The application of a genetic algorithm to trunk network routing table optimisation. In: Proc. 10th UK Teletraffic Symp.: Performance Engineering in Telecomms. Networks, pp. 2/1—2/6 (1993)

    Google Scholar 

  9. Abuali, F.N., Schoenefeld, D., Wainwright, R.L.: Designing telecommunications networks using genetic algorithms and probabilistic minimum spanning trees. In: Proceedings of the 1994 ACM symposium on Applied computing, pp. 242–246 (1994)

    Google Scholar 

  10. Celli, G., Costamagna, E., Fanni, A.: Genetic algorithms for telecommunication network optimization. In: Proc. IEEE Int’l. Conf. on Systems, Man and Cybernetics, vol. 2, pp. 1227–1232 (1995)

    Google Scholar 

  11. Kumar, A., Pathak, R.M., Gupta, Y.P.: Genetic-algorithm-based reliability optimization for computer network expansion. IEEE Transactions on Reliability 44(1) (1995)

    Google Scholar 

  12. Ko, K.-T., Tang, K.-S., Chan, C.-Y., Man, K.-F., Kwong, S.: Using genetic algorithms to design mesh networks. COMPUTER 30(8), 56–61 (1997)

    Article  Google Scholar 

  13. Webb, A., Turton, B.C.H., Brown, J.M.: Application of genetic algorithm to a network optimisation problem. In: Proc. 6th IEE Conference on Telecommunications, pp. 62–66 (1998)

    Google Scholar 

  14. Knowles, J., Oates, M., Corne, D.: Advanced Multi-Objective Evolutionary Algorithms Applied to Two Problems in Telecommunications. BT Technology Journal 18(4) (2000)

    Google Scholar 

  15. Hsinghua, C., Premkumar, G., Chao-Hsien, C.: Genetic algs. for commus. network design - an empirical study of the factors that influence performance. IEEE Trans. E.C. 5(3), 236–249 (2001)

    Google Scholar 

  16. Weicker, N., Szabo, G., Weicker, K., Widmayer, P.: Evolutionary multiobjective optimization for base station transmitter placement with frequency assignment. IEEE Trans. E.C. 7(2), 189–203 (2003)

    Google Scholar 

  17. Crepu, J.-C., Koukam, A., Lissajoux, T., Caminada, A.: Automatic mesh generation for mobile network dimensioning using evolutionary approach. IEEE Trans. Evol. Comp. 9(1), 18–30 (2005)

    Article  Google Scholar 

  18. Corne, D., Smith, G.D., Oates, M. (eds.): Telecommunications Optimization: Heuristic and Adaptive Techniques, p. 416. John Wiley & Sons, Chichester (2000)

    Google Scholar 

  19. Pedrycz, W. (ed.): Computational Intelligence in Telecommuns. Networks, p. 450. CRC Press, Boca Raton (2000)

    Google Scholar 

  20. Wang, L. (ed.): Soft Computing in Communications, p. 408. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  21. Deb, K.: Multiobjective Optimization using Evolutionary Algorithms, p. 518. Wiley, Chichester (2001)

    Google Scholar 

  22. Corne, D., Deb, K., Fleming, P., Knowles, J.: The good of the many outweighs the good of the one: evolutionary multiobjective optimization, coNNectionS. IEEE Neur. Net. Soc. 1(1), 9–13 (2003)

    Google Scholar 

  23. Collete, Y., Siarry, P.: Multiobjective optimization: principles & case studies, p. 293. Springer, Heidelberg (2004)

    Book  Google Scholar 

  24. Goldberg, D.: Genetic algs. in search, optimization and machine learning. Addison Wesley, Reading (1989)

    Google Scholar 

  25. Syswerda, G.: A study of reproduction in steady state genetic algorithms. In: FOGA I, pp. 94–101. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  26. Syswerda, G.: Uniform crossover in genetic algorithms. In: Proc. 3rd Int’l Conf. on Genetic Algorithms, pp. 2–9. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  27. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proc. IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE Service Center (1995)

    Google Scholar 

  28. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Science, 220(4598), 671—680 (1983)

    Google Scholar 

  29. Edgington, E.S.: Randomization Tests, p. 424. Marcel Dekker, New York (1995)

    MATH  Google Scholar 

  30. Corne, D., Oates, M., Kell, D.: Landscape state machines: tools for evolutionary algorithm performance analyses and landscape /algorithm mapping. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 187–198. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  31. Rowe, W., Corne, D., Knowles, J.: Predicting Stochastic Search Algorithm Performance using Landscape State Machines. Proc. IEEE Con. Evol. Comp. (to appear, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weal, P., Corne, D., Murphy, C. (2006). Optimisation of CDMA-Based Mobile Telephone Networks: Algorithmic Studies on Real-World Networks. In: Runarsson, T.P., Beyer, HG., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds) Parallel Problem Solving from Nature - PPSN IX. PPSN 2006. Lecture Notes in Computer Science, vol 4193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11844297_41

Download citation

  • DOI: https://doi.org/10.1007/11844297_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38990-3

  • Online ISBN: 978-3-540-38991-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics