Abstract
Pattern classification seeks to minimize error of unknown patterns, however, in many real world applications, type I (false positive) and type II (false negative) errors have to be dealt with separately, which is a complex problem since an attempt to minimize one of them usually makes the other grow. Actually, a type of error can be more important than the other, and a trade-off that minimizes the most important error type must be reached. Despite the importance of type-II errors, most pattern classification methods take into account only the global classification error. In this paper we propose to optimize both error types in classification by means of a multiobjective algorithm in which each error type and the network size is an objective of the fitness function. A modified version of the GProp method (optimization and design of multilayer perceptrons) is used, to simultaneously optimize the network size and the type I and II errors.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abbass, H.A.: A memetic Pareto evolutionary approach to artificial neural networks. In: Stumptner, M., Corbett, D., Brooks, M. (eds.) Proceedings of the 14th Australian Joint Conference on Artificial Intelligence (AI 2001), Berlin, pp. 1–12 (2001)
Abbass, H.A.: Pareto neuro-evolution: constructive ensemble of neural networks using multi-objective optimization. In: IEEE Congress on Evolutionary Computation (CEC 2003), Canberra, Australia, vol. 3, pp. 2074–2080. IEEE Press, Los Alamitos (2003)
Abbass, H.A.: Speeding up back-propagation using multiobjective evlutionary algorithms. In: Neural Computation, vol. 15(11), pp. 2705–2726. MIT Press, Cambridge (2003)
Abbass, H.A., Sarker, R.A., Newton, C.S.: PDE: A Pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proc. of the IEEE Congress on Evolutionary Computation (CEC 2001), vol. 2, pp. 971–978. IEEE Press, Piscataway (2001)
Altman, E.I.: The success of business failure prediction models. an international survey. Journal of Banking, Accounting and Finance 8, 171–198 (1984)
Barton, R.J.: Neyman-Pearson Hypothesis TestingSignal. ECE 6333 - Signal Detection and Estimation (2005), http://www2.egr.uh.edu/~rbarton/Classes/ECE6333/files.pdf/Notes/Notes_9-19-05.pdf
Castillo, P.A., Carpio, J., Merelo, J.J., Rivas, V., Romero, G., Prieto, A.: Evolving Multilayer Perceptrons. Neural Processing Letters 12(2), 115–127 (2000)
Castillo, P.A., González, J., Merelo, J.J., Rivas, V., Romero, G., Prieto, A.: G-Prop-III: Global Optimization of Multilayer Perceptrons using an Evolutionary Algorithm. In: Congress on Evolutionary Computation, In Genetic and Evolutionary Computation Conference, Orlando, USA, vol. I, p. 942 (1999) ISBN:1-55860-611-4
Castillo, P.A., Merelo, J.J., Rivas, V., Romero, G., Prieto, A.: G-Prop: Global Optimization of Multilayer Perceptrons using GAs. Neurocomputing 35/1-4, 149–163 (2000)
Castillo, P.A., Merelo, J.J., Romero, G., Prieto, A., Rojas, I.: Statistical Analysis of the Parameters of a Neuro-Genetic Algorithm. IEEE Transactions on Neural Networks 13(6), 1374–1394 (2002)
Coello Coello, C.A., Van-Veldhuizen, D.A., Lamont, G.B.: Evolutionary algorithms for solving multi-objective problems. Kluwer Academic Publishers, New York (2002)
Coello Coello, C.A., Cortés, N.C.: Solving Multiobjective Optimization Problems using an Artificial Immune System. Genetic Programming and Evolvable Machines 6(2), 163–190 (2005)
de Toro, F., Ortega, J., Fernandez, J., Diaz, A.F.: Parallel genetic algorithm for multiobjective optimization. In: 10th Euromicro Workshop on Parallel, Distributed and Network-based processing, pp. 384–391. IEEE Computer Society, Los Alamitos (2002)
Freiman, J.A., Chalmers, T.C., Smith, H.: The importance of beta, the type II error and sample size in the design and interpretation of the randomized control trial. New England Journal of Medicine 299, 690–694 (1978)
Garcia-Pedrajas, N., Hervas-Martinez, C., Ortiz-Boyer, D.: Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Trans. Evolutionary Computation 9(3), 271–302 (2005)
Ishibuchi, H., Yamamoto, T.: Evolutionary multiobjective optimization for generating an ensemble of fuzzy rule-based classifiers. In: Proc. of the Genetic and Evolutionary Computation Conference (GECCO 2003). LNCS, pp. 1077–1088. Springer, Heidelberg (2003)
Jin, Y., Okabe, T., Sendhoff, B.: Neural network regularization and ensembling using multiobjective evolutionary algorithms. In: Congress on Evolutionary Computation, CEC 2004, vol. 1, pp. 1–8 (2005) ISBN:0-7803-8515-2
Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation and active learning. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 231–238. MIT Press, Cambridge (1995)
Liu, Y., Yao, X.: Ensemble leagning via negative correlation. Neural Networks 12(10), 1399–1404 (1999)
Liu, Y., Yao, X., Higuchi, T.: Evolutionary ensembles with negative correlation learning. IEEE Transactions on Evolutionary Computation 4(4), 380–387 (2000)
Mangasarian, O.L., Setiono, R., Wolberg, W.H.: Pattern recognition via linear programming: Theory and application to medical diagnosis. In: Coleman, T.F., Li, Y. (eds.) Large-scale numerical optimization, pp. 22–30. SIAM Publications, Philadelphia (1990)
Olvander, J.: Robustness considerations in multi-objective optimal design. Journal of Engineering Design 16(5), 511–523 (2005)
Perrone, M.P., Cooper, L.N.: When networks disagree: Ensemble methods for hybrid neural networks. In: Mammone, R.J. (ed.) Neural Networks for Speech and Image Processing, pp. 126–142 (1993)
Prechelt, L.: PROBEN1 — A set of benchmarks and benchmarking rules for neural network training algorithms. Technical Report 21/94, Fakultät für Informatik, Universität Karlsruhe, D-76128 Karlsruhe, Germany (September 1994)
Rolf, C., Cooper, T.G., Yeung, C.H., Nieschlag, E.: Antioxidant treatment of patients with asthenozoospermia or moderate oligoasthenozoospermia with high-dose vitamin C and vitamin E: a randomized, placebo-controlled, double blind study. Hum. Reprod. 14, 1028–1033 (1999)
Roman, I., de la Torre, J.M., Castillo, P.A., Merelo, J.J.: Sectorial bankruptcy prediction analysis using artificial neural networks: The spanish companies case. In: 25th Annual Congress European Accounting Association, Copenhagen, April 2002, p. 237 (2002)
Roman, I., de la Torre, J.M., Gomez, M.E., Castillo, P.A., Merelo, J.J.: Bankruptcy prediction adapted to firm characteristics. an empirical study. In: 26th Annual Congress European Accounting Association, Congress Book, April 2003, p. A-108, Sevilla (2003)
Savulescu, J., Chalmers, I., Blunt, J.: Are research ethics committees behaving unethically? some suggestions for improving performance and accountability. Br. Med. J. 313, 1390–1393 (1996)
Sharkey, A.J.C.: On combining artificial neural nets. Connection Science 8, 299–313 (1996)
Smith, S.M.: Statistical scrotal effect. Nature 368, 501–502 (1994)
Sterne, J.A.C.: Teaching hypothesis tests - time for significant change? Statistics in Medicine 21, 985–994 (2002)
Storn, R., Price, K.: Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, International Computer Science Institute, Berkeley (1995)
Van-Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evolutionary Computation 8(2), 125–147 (2000)
Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–1447 (1999)
Zhou, Z.H., Wu, J., Tang, W.: Ensembling neural networks: many could be better than all. Artificial Intelligence 137(1-2), 239–253 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Castillo, P.A., Arenas, M.G., Merelo, J.J., Rivas, V.M., Romero, G. (2006). Multiobjective Optimization of Ensembles of Multilayer Perceptrons for Pattern Classification. In: Runarsson, T.P., Beyer, HG., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds) Parallel Problem Solving from Nature - PPSN IX. PPSN 2006. Lecture Notes in Computer Science, vol 4193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11844297_46
Download citation
DOI: https://doi.org/10.1007/11844297_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38990-3
Online ISBN: 978-3-540-38991-0
eBook Packages: Computer ScienceComputer Science (R0)