Abstract
This paper addresses the problem of identifying gene modules on the basis of different types of biological data such as gene expression and protein-protein interaction data. Given one or several genes of interest, the aim is to find a group of genes—containing the prespecified genes—that are maximally similar with respect to all data types and sets under consideration. While existing studies follow an aggregation approach to tackle the problem of data integration in module identification, we here propose a multiobjective evolutionary method that provides several advantages: (i) no overall similarity measure needs to be defined, (ii) the interactions and conflicts between the data sets can be explored, and (iii) arbitrary data types can be integrated. The usefulness of the presented approach is demonstrated on different biological scenarios, also in comparison to standard clustering.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hanisch, D., Zien, A., Zimmer, R., Lengauer, T.: Co-clustering of biological networks and gene expression data. Bioinformatics 18(Suppl. 1), S145–S154 (2002)
Speer, N., Spieth, C., Zell, A.: A memetic co-clustering algorithm for gene expression profiles and biological annotation. In: CEC 2004, pp. 1631–1638. IEEE, Los Alamitos (2004)
Steinhauser, D., et al.: Hypothesis-driven approach to predict transcriptional units from gene expression data. Bioinformatics 20(12), 1928–1939 (2004)
Bleuler, S., Zitzler, E.: Order preserving clustering over multiple time course experiments. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 33–43. Springer, Heidelberg (2005)
Prelić, A., et al.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9), 1122–1129 (2006)
Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)
Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA — a platform and programming language independent interface for search algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)
Wille, A., et al.: Sparse graphical gaussian modeling of the isoprenoid gene network in arabidopsis thaliana. Genome Biol. 5(11) (2004)
Gasch, A.P., et al.: Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell. 11(12), 4241–4257 (2000)
Salwinski, L., et al.: The database of interacting proteins: 2004 update. Nucleic Acids Res. 32(Database issue), D449–D451 (2004)
Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH) Zürich, Switzerland (1999)
Owen, A.B., et al.: A gene recommender algorithm to identify coexpressed genes in c. elegans. Genome Res. 13(8), 1828–1837 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Calonder, M., Bleuler, S., Zitzler, E. (2006). Module Identification from Heterogeneous Biological Data Using Multiobjective Evolutionary Algorithms. In: Runarsson, T.P., Beyer, HG., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds) Parallel Problem Solving from Nature - PPSN IX. PPSN 2006. Lecture Notes in Computer Science, vol 4193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11844297_58
Download citation
DOI: https://doi.org/10.1007/11844297_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38990-3
Online ISBN: 978-3-540-38991-0
eBook Packages: Computer ScienceComputer Science (R0)