Skip to main content

A Distance-Based Information Preservation Tree Crossover for the Maximum Parsimony Problem

  • Conference paper
Parallel Problem Solving from Nature - PPSN IX (PPSN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4193))

Included in the following conference series:

Abstract

The Maximum Parsimony problem aims at reconstructing a phylogenetic tree from DNA sequences while minimizing the number of evolutionary changes. Known to be NP-complete, the MP problem has many applications. This paper introduces a Distance-based Information Preservation (DiBIP) Tree Crossover. Contrary to previous crossover operators, DiBIP uses a distance measure to characterize the semantic information of a phylogenetic tree and ensures the preservation of distance related properties between parents and offspring. The performance of DiBIP is assessed with a mimetic algorithm on a set of 28 benchmark instances from the literature. Comparisons with 3 state-of-the-art algorithms show very competitive results of the proposed approach with improvement of some previously best results found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bininda-Emonds, O.R.P. (ed.): Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life. Springer, Heidelberg (2004)

    MATHĀ  Google ScholarĀ 

  2. Congdon, C.B.: Gaphyl: An Evolutionary Algorithms Approach For The Study Of Natural Evolution. In: Proceedings of the 6th Joint Conference on Information Science (2002)

    Google ScholarĀ 

  3. Congdon, C.B., Septor, K.J.: Phylogenetic trees using evolutionary search: Initial progress in extending gaphyl to work with genetic data. In: Proc. of the 2003 Congress on Evolutionary Computation, pp. 320ā€“326. IEEE press, Los Alamitos (2003)

    Google ScholarĀ 

  4. Cotta, C., Moscato, P.: Inferring Phylogenetic Trees Using Evolutionary Algorithms. In: GuervĆ³s, J.J.M., Adamidis, P.A., Beyer, H.-G., FernĆ”ndez-VillacaƱas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol.Ā 2439, pp. 720ā€“729. Springer, Heidelberg (2002)

    Google ScholarĀ 

  5. Felsenstein, J.: Inferring phylogenies. Sinauer Associates (2003)

    Google ScholarĀ 

  6. Fitch, W.: Towards defining course of evolution: minimum change for a specified tree topology. Systematic ZoologyĀ 20, 406ā€“416 (1971)

    ArticleĀ  Google ScholarĀ 

  7. Foulds, L.R., Graham, R.L.: The Steiner problem in phylogeny is NP-complete. Advances in Applied MathematicsĀ 3, 43ā€“49 (1982)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  8. GoĆ«ffon, A., Richer, J.-M., Hao, J.-K.: Local search for the maximum parsimony problem. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol.Ā 3612, pp. 678ā€“683. Springer, Heidelberg (2005)

    ChapterĀ  Google ScholarĀ 

  9. Goƫffon, A., Richer, J.-M., Hao, J.-K.: Progressive Tree Neighborhood applied to the Maximum Parsimony Problem. IEEE Transactions on Computational Biology and Bioinformatics (submitted, 2006)

    Google ScholarĀ 

  10. Goloboff, P.A., Farris, J.S., Nixon, K.: TNT: Tree Analysis Using New Technology (2003)

    Google ScholarĀ 

  11. Hillis, D., Moritz, C., Mable, B.: Molecular Systematics. Sinauer, Boston (1996)

    Google ScholarĀ 

  12. Lewis, P.O.: A genetic algorithm for maximum-likelihood phylogeny inference using nucleotide sequence data. Molecular Biolology and EvolutionĀ 15(3), 277ā€“283 (1998)

    ArticleĀ  Google ScholarĀ 

  13. Matsuda, H.: Protein Phylogenetic Inference Using Maximum Likelihood With A Genetic Algorithm. In: Prof. of Pacific Symposium on Biocomputing, pp. 512ā€“536 (1996)

    Google ScholarĀ 

  14. Moilanen, A.: Searching for Most Parsimonious Trees with Simulated Evolutionary Optimization. CladisticsĀ 15(1), 39ā€“50 (1998)

    ArticleĀ  Google ScholarĀ 

  15. Ribeiro, C.C., Vianna, D.S.: A genetic algorithm for the phylogeny problem using an optimized crossover strategy based on path-relinking. In: Proc. of 2nd Bresil Workshop on Bioinformatics, pp. 97ā€“102 (2003)

    Google ScholarĀ 

  16. Ribeiro, C.C., Vianna, D.S.: A GRASP/VND heuristic for the phylogeny problem using a new neighborhood structure. International Transactions in Operational ResearchĀ 12, 1ā€“14 (2005)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  17. Sneath, P.H.A., Sokal, R.R.: Numerical taxonomy. W.H. Freeman and Co., San Francisco, California (1973)

    MATHĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

GoĆ«ffon, A., Richer, JM., Hao, JK. (2006). A Distance-Based Information Preservation Tree Crossover for the Maximum Parsimony Problem. In: Runarsson, T.P., Beyer, HG., Burke, E., Merelo-GuervĆ³s, J.J., Whitley, L.D., Yao, X. (eds) Parallel Problem Solving from Nature - PPSN IX. PPSN 2006. Lecture Notes in Computer Science, vol 4193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11844297_77

Download citation

  • DOI: https://doi.org/10.1007/11844297_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38990-3

  • Online ISBN: 978-3-540-38991-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics