FT-MPI, Fault-Tolerant Metacomputing and
Generic Name Services : a Case Study

David Dewolfs, Jan Broeckhove, Vaidy Sunderam, Graham E. Fagg

Depts. of Math and Computer Science of the University of Antwerp (Antwerp,
Belgium), Emory University (Atlanta, GA, USA) and the University of Tennessee
(Knoxville, TN, USA)
{David.Dewolfs,Jan.Broeckhove }@Qua.ac.be, vss@mathcs.emory.edu, fagg@cs.utk.edu

Abstract. There is a growing interest in deploying MPI over very large
numbers of heterogenous, geographically distributed resources. FT-MPI
provides the fault-tolerance necessary at this scale, but presents some
issues when crossing multiple administrative domains. Using the H20
metacomputing framework, we add cross-administrative domain interop-
erability and “pluggability” to FT-MPI. The latter feature allows us, using
prozies, to transparently replace one vulnerable module - its name service
- with fault-tolerant replacements. We present an algorithm for improving
performance of operations over the prozies. We evaluate its performance
in a comparison using the original name service, OpenLDAP and current
Emory research project HDNS.

Keywords: FT-MPI, H20, metacomputing, fault-tolerance, heterogeneity

1 Introduction

Over the course of the last ten years, clusters running some implementation of
MPT have become some of the most popular supercomputing platforms. Recently,
there has been a growing interest in clustering resources that feature extensive
geographical distribution across multiple Administrative Domains (ADs). This
raises the issue of fault-tolerance. FT-MPI [7] differs from other solutions to the
fault-tolerance problem [3,4,6,10,5], in that it allows the application itself to re-
store it’s own state, instead of relying on automated - but potentially unscalable
- solutions like global distributed checkpointing. This makes it an interesting so-
lution for highly geographically distributed, heterogenous resources with a need
for customized, lightweight recovery mechanisms.

However, FT-MPI is currently confined to single ADs. Also, bottlenecks and
potential single points of failure (SPoFs) become an issue when deploying it
over slower AD interconnects. One of the critical modules is the FT-MPI name
service (NS). We have previously addressed these points [2,1] by developing a
proxy-based solution which allows FT-MPI administrators to use any NS of their
own choice (including any fault tolerance features available with it). Further, we
use features of the H20 metacomputing framework [8] to span multiple ADs
without the need for individual accounts on each system.

In this paper, we focus on improving performance of operations over the prox-
ies. We demonstrate the ability of our approach to transparently and scalably
switch between different NSs. We will also present performance test data for the
improved algorithms using different backend NSs.

2 Design Overview

2.1 Basic FT-MPI architecture

A running FT-MPI virtual machine (VM) deploys one FT-MPI runtime per
node and a number of daemons to assist it in setting up and managing jobs: a
startup-daemon on each node (semi-critical), one or more notifier daemons (non
critical), and a single naming daemon (figure 1).

Computational nodes

N = || N

FT-MPI runtime FT-MPI runtime FT-MPI runtime FT-MPI runtime

Fig. 1. a typical running FT-MPI system

Each VM needs exactly one naming daemon (however, a single NS instance
can manage multiple VMs). It provides a custom NS and serves a crucial role
in VM buildup, job startup and job recovery. Specifically, the FT-MPI runtime
uses it to keep records on VM and job membership. To ensure data consistency,
editing of records for job and task state in the NS is done by the FT-MPI runtime
of single leader node. The leader edits these records during the error recovery
phase to clean up job and task state. FT-MPI runtimes on other nodes are then
notified of the changes through a system of callbacks. Leaders are elected through
a custom call in the NS.

We note the following issues with the daemon in the currently available ver-
sion of FT-MPI: 1) it constitutes a potential SPoF, as it is highly state-retaining
and critically important for the general functioning of the VM, 2) it is also a
possible choke-point when communicating over slow AD interconnects (this issue
was recently addressed [13] and an adapted recovery algorithm should be added
to future releases of FT-MPT) and 3) it does not support features like replication
and load balancing, which would be desirable to improve scalability at very large
VM sizes. We note that many generic name servers currently available do offer
these features.

2.2 Extensions to the FT-MPI architecture

We use proxies to bridge between the custom FT-MPI NS protocol an any generic
NS, enable an operator of an FT-MPI VM to use a NS of his own choice :

— instead of directly contacting the NS, components of FT-MPI contact a proxy
which resides on the gateway between the single AD and the “outside world”;
this proxy acts as a “front-end” to the real NS, translating FT-MPI protocol
calls to a format that is understood by the real, “back-end” name service;
the front-end does not retain internal state - thus, failures can be handled
through simple measures like a trivial replication scheme or a restart

— all nodes on a single AD retain an open connection to the NS front-end for
that AD, and each NS front-end retains a single connection with the NS
back-end (hierarchical message forwarding)

— the NS front-end is implemented as a H20 “pluglet” making it fully remotely
deployable by operators on any machine that runs an H20 kernel

The setup is best illustrated by the example in figure 2.

AD3

[Computational node
[] Front-end (NS proxy)

B Back-end (true NS)

Fig.2. An FT-MPI VM using proxies and a generic back-end NS

This approach allows FT-MPI to use one of a wide range of “off the shelf”
NSs available. Many of these provide important fault-tolerance and performance
features lacking from the current FT-MPI NS (load distribution, replication,
checkpointing etc.).

The proxies are implemented in Java. This allowed us to use JNDI, the Java
Naming and Directory Interface, which provides uniform access to a diverse set of
NSs, ranging from LDAP to DNS. Any provider can make a NS “JNDI-enabled”
by implementing a Service Provider Interface (SPI). All interaction with the NS
is fully transparent to the user. Thus, using JNDI allows us to make access to
the backend generic w.r.t. different NSs.

2.3 Concurrency, atomicity and JNDI

FT-MPI assumes a centralized, single-threaded NS which queues all incoming
requests on receive. A number of its calls resolve compound operations like in-
crement, compare and set etc. in a single atomic call. However, 1) the new design
we propose has front-ends running in parallel and accessing the back-end concur-
rently and 2) certain single (atomic) calls in the NS have to be resolved through
multiple primitives in JNDI, requiring separate lookups and subsequent binds.
This introduces the possibility for concurrency problems, e.g. race conditions.

JNDI primitives We previously discussed a solution through the use of remote
unreliable locks, composed from basic JNDI primitives[1]. We will show that it is
possible to handle a majority of NS interactions without the use of said locks by
exploiting the NSs single-update / multiple-callback architecture. To accomplish
our goals, JNDI provides us with the following (relevant) atomic primitives:

— bind(name,object): binds object, which can contain an arbitrary number of
fields to name; returns success or failure; appropriate exception is thrown if
name is already bound

— rebind(name,object): replaces the current object bound to name by object,
or acts identical to bind in case name hasn’t been bound yet; returns success
or failure

— lookup(name): returns the object bound to name; an appropriate exception
is thrown in case of problems

JNDI also supports a callback mechanism, enabling us to register and “listen”
for updates to the NS, very much like the original FT-MPI NS.

Leader election The most important part of custom functionality to imple-
ment is the leader election system. Once a leader gets elected, all editing of
records for job and task state is done through him, eliminating the problem

of concurrency. The FT-MPI NS implements leader election as a “grab the
token” type of contest. The NS provides a custom call of the general form
swap (token,old_ leader,contender) which swaps the ownership of token from old_ leader
to contender if the current owner of token is old_leader. In other words: the first
contender node to get its message handled by the NS gets to swap ownership of

the token (and become leader) whilst a failure message is returned to the others

on all subsequent messages.

An adapted election algorithm Given the primitives available to us, we per-
form leader election by implementing “grab a token” as “bind a token”. For each
token which is swapped during the lifetime of the VM, an object is stored in the
NS with an election_ count keeping track of how many swaps have already been
performed on it. This token is read during the initialization phase of the proxy
and the counter is locally cached for later use. When an election takes place, all
contender nodes send the appropriate message to their respective proxies and
the following sequence of actions is performed:

1. the proxies each increase the cached leader counter for token by one, once -
for all contenders who share the same proxy, the contest is resolved locally
at the proxy

2. each proxy, for its respective local winner, attempts to bind an object under
the name "<token> <counter>" - the node for which the bind succeeds is
the winner node, all others are loser nodes

3. the proxy acting for the winner node rebinds token with the new ownership
data (triggering a callback) - the winner token becomes the leader and the
outcome is relayed back to the new leader node - meanwhile, the proxies
handling the calls for the respective loser nodes wait for a callback on a
rebind for token, eventually relaying the outcome to their respective loser
nodes as normal

4. if something goes wrong during the winner’ actions in step 3 (non-atomic),
this means something is wrong with the proxy, the gateway on which it re-
sides, or its network connection; all of these will get nodes in their respective
AD into trouble and register with the FT-MPI runtime as an error - the
FT-MPI runtime will then recommence the recovery procedure (including a
potential new leader election) as normal

This leaves us only with the problem of compound operations: what if something
goes wrong with the leader in the middle of a compound operation? JNDI only
allows for atomic operations on a single object at a time. This would lead to
inconsistencies in the backend. We deal with this problem by using a single state
object which contains pointers to all objects involved in the compound operation.
We do not directly write to the objects themselves, but to a copy, keeping the old
state intact until all actions in the compound operation have been performed.
When ready, a rebind of the index record turns everything over to the new state
within a single operation. This may leave spurious objects in the NS, but these
can easily be cleaned up by an independent garbage removal process.

Results Advantages of this approach are 1) the ability to drastically reduce
dependence on remote locks, enhancing performance by reducing the amount
of JNDI calls that would normally be needed, and 2) the ability to do partial
local resolution of the leader election process at the proxy, bringing down the
amount of effective calls going out to the back end NS. This reduces the potential
for choke-points on connections between different ADs and helps spreading load
for very large, geographically dispersed VMs. Also, the number of callbacks is
similarly reduced to one per proxy instead of one per node.

3 Evaluation

1300 375 »-
1200 ey S —— S T\
1100 325 X /
) -—v . —~ 300 JuN N
» 1000 ‘H/\v—v———v/' 9 s — o ——a
E 00 E] R P A
v s
2 800 @ 505
£ o0 £
= i 200
% 600 M Original/insert X 175 W Original/read
S s00 # OpenLDAP/insert| O 150 # OpenLDAP/read
= 400 ¥ HDNS/insert = 1?3 ¥ HDNS/read
z 00— =
200 o)
100 25
0 T T T T T T T 1 g L L S e R R]
10 100 200 300 400 500 600 700 800 900 10 100 200 300 400 500 600 700 800 900
Payload (Bytes) Payload (Bytes)
70000 22000
65000 /) 20000 /
60000 i
rd —. 18000
% 55000 4 m /
£ 50000 /)/' E 16000 /
o 45000 /V/ @ 14000
€ 40000 £ /_/./
i= 12000
= 35000 LA 4 /-/;/
¥ /,/ -/V M Originalfinsert ¥ 10000 Borgi
8 30000 4 OpenLDAP/insert| O
=] OpenLDAP/read
C 25000 /,/ 'V HDNSinsert L 8000 /:/)/_'/ W HDNS/read
© 20000 g 6000
= 15000
4000
10000 —
5000 9 ey
0 L — T T T T T Or——T——T T T T T T T T
5 10 15 20 25 30 35 40 45 50 55 60 5 10 15 20 25 30 35 40 45 50 55 60
Operations # Operations

Fig.3. Evolution of wall-clock time with increasing payload and # opera-
tions(read/write)

Setup and Experiments To demonstrate the ability of our setup to trans-
parently switch between multiple NS backends,we performed a comparative ex-
periment on two nodes: one in Atlanta (Georgia), USA, the other situated in
Antwerp, Belgium. The node in Atlanta is a 4 CPU 2.8 GHz Pentium 4 with
1GB memory running Mandriva Linux 2006. The node in Antwerp is a 1.90GHz
Pentium 4 with 256MB memory running Suse Linux 7. This setup was used in
order to simulate the conditions which the design is aimed at: geographically dis-
tributed, heterogenous resources. The node in Atlanta ran the original FT-MPI
NS, OpenLDAP or HDNS depending on the test case. The node in Antwerp ran
a basic client program in both cases, plus the front-end in the case of the new
design.

We ran a number of performance tests comparing the original NS with two
alternatives: the LDAP-based OpenLDAP using the Berkeley DB, and HDNS
[12]. HDNS is a naming service initially developed for the Harness Project[11].
While developing the SPI, a completely new version of HDNS has been designed
and implemented. Both of the NSs tested support distribution and a number
of features like fault-tolerance and persistency, which are not available in the
original FT-MPI NS.

The following experiments were performed to evaluate scalability in terms of
transaction size and frequency: 1) insert and read back entries with progressively
growing payloads (10-900 B, using 100 B steps from 100 to 900 B) and 2) insert
and read batches with a progressively growing number of equal-sized entries into
the NS - measure wall-clock time for both cases. Ultimately, we want the new
NS to be as scalable and stable as the original. We tested the performance of
insertion and deletion without locks, allowed by the leader election mechanism
described above.

Results We note that all experiments successfully ran to conclusion and left the
back-end in a consistent state. From a practical point of view, we noticed that
changing between OpenLDAP and HDNS was very easily accomplished. None
of these experiments required any kind of code change or recompile of either
the original FT-MPI code, or the Java-code for the proxies. A few changes to a
configuration file and command-line parameters suffice to change NS back-ends
from one experiment to another.

Looking at the figures, we conclude that the ability to do insertion without
locking (though still less efficient than the original NS) provides us with a no-
table performance improvement over previous experiments in which we did use
locking [1], the performance gain consistently being around 40%. It should prove
interesting to do further research on improving performance of compound inser-
tion operations, bringing figures even closer to those of the original NS. We also
note that HDNS performs rather well as a backbone, outperforming OpenLDAP
on both insert and read operations in both experiments. On read operations it
even succeeds at slightly outperforming the original NS. We are currently in-
vestigating possible reasons for this remarkable behavior. Further, both graphs
show linear growth on both insert and read for both experiments, proving that
our design remains scalable and stable.

4 Conclusions

In this paper, we have discussed issues concerning the deployment of FT-MPI
for large scale computations on highly geographically distributed, heterogenous
resources. We have shown that “vanilla” FT-MPI poses some limitations in this
area due to the nature of its naming service. We have presented a design, leverag-
ing JNDI, which address these issues by enabling operators of an FT-MPI setup
to “plug in” their own name services. This feature is highly desirable as existing
“off the shelf” name services often do provide numerous features for improved
fault tolerance and performance.

We have discussed an algorithm which allows us to implement a leader elec-
tion system without locking, and note that it is possible to minimize the amount
of locking in general. This results in a significant performance gain over previ-
ous implementations, both in terms of the amount of JNDI primitives needed
and the amount of data transferred over connections between multiple adminis-
trative domains. We have presented experimental results which 1) confirm the

efficacy of this approach, as well as 2) show the effective ability to transparently
change between different back-ends, as demonstrated by our use of both LDAP
and HDNS back-ends without significant changes.

References

1.

10.

11.

12.

13.

D. Dewolfs, D. Kurzyniec, V. Sunderam, J. Broeckhove, T. Dhaene, G. E. Fagg.
Applicability of Generic Naming Services and Fault Tolerant Metacomputing with
FT-MPI. In Proceedings of the 12th European Parallel Virtual Machine and Mes-
sage Passing Interface - Euro PVM/MPI (Springer-Verlag Berlin LNCS 3666),
Sorrento (Naples), Italy, 2005

D. Kurzyniec and V. Sunderam. Combining FT-MPI with H20: Fault-tolerant MPI
across administrative boundaries. In Proceedings of the HCW 2005-14th Heteroge-
neous Computing Workshop, 2005

A. Agbaria, R. Friedman. Starfish: Fault-tolerant dynamic MPI programs on clus-
ters of workstations. In Fighth IEEE International Symposium on High Perfor-
mance Distributed Computing, 1999, pp. 31

. A. Bouteiller, F. Cappello, T. Herault, G. Krawezik, P. Lemarinier and F. Mag-

niette. MPICH-V2: a fault tolerant MPI for volatile nodes based on pessimistic
sender based message logging. In ACM/IEEE SC2008 Conference, 2003, pp. 25
Y. Chen, K. Li, J.S. Plank. CLIP: A checkpointing tool for message-passing parallel
programs. 1997. Available at http://citeseer,ist.psu.edu/chen97clip.html

E. Elnozahy and W. Zwaenepoel. Manetho: Transparent rollback-recovery with low
overhead, limited rollback and fast output. In IEEE Transactions on Computers,
Special Issue on Fault-Tolerant Computing, 41(5), May 1992, pp.526-531

G. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. Bosilca, J. Pjesivac-Grbovic and
J. Dongarra. Process fault-tolerance: Sematics, design and applications for high-
performance computing. In International Journal for High Performance Applica-
tions and Supercomputing. 2004.

D. Kurzyniec, T. Wrzosek, D. Drzewiecki and V. Sunderam. Towards self-
organising distributed computing frameworks: The H20 approach. In Parallel Pro-
cessing Letters, 13(2), 2003, pp. 273-290

S. Louca, N. Neophytou, A. Lachanas and P. Eviripidou. MPI-FT: Portable fault-
tolerance scheme for MPI. In Parallel Processing Letters, 10(4), 2000, pp. 371-382.
G. Stellner. CoCheck: Checkpointing and process migration for MPI. In 10th In-
ternational Parallel Processing Symposium, 1996, pp. 526-531

M. Migliardi and V. Sunderam. The Harness Metacomputing Framework. In The
Ninth STAM Conference on Parallel Processing for Scientific Computing, S. Anto-
nt0, 1999

D. Gorissen, P. Wendykier, D. Kurzyniec and V. Sunderam. Integrating Heteroge-
neous Information Services Using JNDI. In Proceedings of the HCW 2006 - 15th
Heterogeneous Computing Workshop, Rhodes Island, Greece, April 2006

G. E. Fagg, T. Angskun, G. Bosilca, J. Pjesivac-Grbovic, J. Dongarra. Scalable
Fault Tolerant MPI: Extending the Recovery Algorithm. In Proceedings of the
12th European Parallel Virtual Machine and Message Passing Interface - Euro
PVM/MPI (Springer-Verlag Berlin LNCS 8666), Sorrento (Naples), Italy, 2005,

pp. 67

