Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4148))

  • 1152 Accesses

Abstract

In this work, we develop two methods to improve the accuracy of memory power estimation. Our enhanced memory power model can consider not only the operation mode of memory access, but also the address switching effect and the scaling factors that use the information of physical architecture. The proposed approach is very useful to be combined with memory compiler to generate accurate power model for any specified memory size without extra characterization costs. Then the proposed dummy modular approach can link our enhanced memory power model into commercial power estimation flow smoothly. The experimental results have shown that the average error of our memory power model is only less than 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Library Compiler User Guide: Modeling Timing and Power Technology Libraries. Synopsys (March 2003)

    Google Scholar 

  2. Mittra, S.: Principles of Verilog PLI. Kluwer Academic Publishers, Dordrecht (1999)

    MATH  Google Scholar 

  3. Amrutur, B.S., Horowitz, M.A.: Speed and power scaling of SRAM’s. IEEE Trans. Solid-State Circuits 35, 175–185 (2000)

    Article  Google Scholar 

  4. Evans, R.J., Franzon, P.D.: Energy consumption modeling and optimization for SRAM’s. IEEE Trans. Solid-State Circuits 30, 571–579 (1995)

    Article  Google Scholar 

  5. Chinosi, M., Zafalon, R., Guardiani, C.: Automatic characterization and modeling of power consumption in static RAMs. Low Power Electronics and Design (August 1998)

    Google Scholar 

  6. Coumeri, S.L., Thomas Jr., D.E.: Memory modeling for system synthesis. IEEE Trans. On VLSI Syst. 8, 327–334 (2000)

    Article  Google Scholar 

  7. Schmidt, E., von Colln, G., Kruse, L., Theeuwen, F., Nebel, W.: Memory Power Models for Multilevel Power Estimation and Optimization. IEEE Trans. VLSI Syst. 10, 106–109 (2002)

    Article  Google Scholar 

  8. Olson, J., Nedelchev, I., Lin, Y., Mauskar, A., Sproch, J.: State Dependent Power Modeling, US Patent # 5,838,579 (1998)

    Google Scholar 

  9. TSMC 0.25μm Process SRAM-SP-HD Generator User Manual, Release 5.0, Artisan Comp. (January 2002)

    Google Scholar 

  10. Nanosim User Guide: Version X-2005.09. Synopsys (September 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hsieh, WT., Yu, CC., Liu, CN.J., Chiu, YF. (2006). A Scalable Power Modeling Approach for Embedded Memory Using LIB Format. In: Vounckx, J., Azemard, N., Maurine, P. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2006. Lecture Notes in Computer Science, vol 4148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847083_53

Download citation

  • DOI: https://doi.org/10.1007/11847083_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39094-7

  • Online ISBN: 978-3-540-39097-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics