Skip to main content

Random Separation: A New Method for Solving Fixed-Cardinality Optimization Problems

  • Conference paper
Parameterized and Exact Computation (IWPEC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4169))

Included in the following conference series:

Abstract

We develop a new randomized method, random separation, for solving fixed-cardinality optimization problems on graphs, i.e., problems concerning solutions with exactly a fixed number k of elements (e.g., k vertices V′) that optimize solution values (e.g., the number of edges covered by V′). The key idea of the method is to partition the vertex set of a graph randomly into two disjoint sets to separate a solution from the rest of the graph into connected components, and then select appropriate components to form a solution. We can use universal sets to derandomize algorithms obtained from this method.

This new method is versatile and powerful as it can be used to solve a wide range of fixed-cardinality optimization problems for degree-bounded graphs, graphs of bounded degeneracy (a large family of graphs that contains degree-bounded graphs, planar graphs, graphs of bounded tree-width, and nontrivial minor-closed families of graphs), and even general graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12, 308–340 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cai, L.: Parameterized complexity of cardinality constrained optimization problems. A special issue of The Computer Journal on parameterized complexity (submitted, 2006)

    Google Scholar 

  5. Cai, L., Chan, S.M., Chan, S.O.: Research notes (2006)

    Google Scholar 

  6. Chen, J., Kanj, I., Jia, W.: Vertex cover: further observations and further improvements. J. Algorithms 41, 280–301 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Courcelle, B.: The monadic second-order logic of graphs I: recognisable sets of finite graphs. Inform. Comput. 85(1), 12–75 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  9. Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. J. of the ACM 48(6), 1184–1206 (2001)

    Article  MathSciNet  Google Scholar 

  10. Kleinberg, J., Tardos, E.: Algorithm Design. Pearson, London (2005)

    Google Scholar 

  11. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: Proc. 36th Annual Symp. Foundations of Computer Science, pp. 182–191 (1995)

    Google Scholar 

  12. Robertson, N., Seymour, P.D.: Graph minors XIII: the disjoint paths problem. J. Comb. Ther. (B) 63(1), 65–110 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Schmidt, J.P., Siegel, A.: The spatial complexity of oblivious k-probe hash functions. SIAM J. Comp. 19, 775–786 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Seese, D.: Linear time computable problems and first-order descriptions. Mathematical Structures in Computer Science 6(6), 505–526 (1996)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cai, L., Chan, S.M., Chan, S.O. (2006). Random Separation: A New Method for Solving Fixed-Cardinality Optimization Problems. In: Bodlaender, H.L., Langston, M.A. (eds) Parameterized and Exact Computation. IWPEC 2006. Lecture Notes in Computer Science, vol 4169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847250_22

Download citation

  • DOI: https://doi.org/10.1007/11847250_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39098-5

  • Online ISBN: 978-3-540-39101-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics