Abstract
Many parameterized problems (as the clique problem or the dominating set problem) ask, given an instance and a natural number k as parameter, whether there is a solution of size k. We analyze the relationship between the complexity of such a problem and the corresponding maximality (minimality) problem asking for a solution of size k maximal (minimal) with respect to set inclusion. As our results show maximality problems may increase the parameterized complexity, while “in terms of the W-hierarchy” minimality problems do not increase the complexity.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arvind, V., Raman, V.: Approximation Algorithms for Some Parameterized Counting Problems. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 453–464. Springer, Heidelberg (2002)
Chang, C.C., Keisler, H.J.: Model Theory. In: Studies in Logic and Mathematical Foundations, vol. 73. North-Holland, Amsterdam (1990)
Chen, Y., Flum, J., Grohe, M.: Bounded nondeterminism and alternation in parameterized complexity theory. In: Proceedings of the 18th IEEE Conference on Computational Complexity CCC 2003, pp. 13–29 (2003)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)
Downey, R.G., Fellows, M.R., Regan, K.: Descriptive complexity and the W-hierarchy. In: Proof Complexity and Feasible Arithmetic. AMS-DIMACS Series, vol. 39, pp. 119–134 (1998)
Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. SIAM Journal on Computing 24(6), 1278–1304 (1995)
Fernau, H.: Parameterized algorithms: A graph-theoretic approach. Habilitationsschrift, Universität Tübingen, Tübingen, Germany (2005)
Flum, J., Grohe, M.: Fixed-parameter tractability, definability, and model checking. SIAM Journal on Computing 31(1), 113–145 (2001)
Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM Journal on Computing 33(4), 892–922 (2005)
Flum, J., Grohe, M.: Model-checking problems as a basis for parameterized intractability. Logical Methods in Computer Science 1(1) (2004)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
Flum, J., Grohe, M., Weyer, M.: Bounded fixed-parameter tractability and \(\mbox{log}^{2}n\) nondeterministic bits. Journal of Computer and System Sciences 72, 34–71 (2006)
Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with hereditary properties. Theoretical Computer Science 289(2), 997–1008 (2002)
Ritter, C.: Fagin-Definierbarkeit. Diplomarbeit, Universität Freiburg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, Y., Flum, J. (2006). The Parameterized Complexity of Maximality and Minimality Problems. In: Bodlaender, H.L., Langston, M.A. (eds) Parameterized and Exact Computation. IWPEC 2006. Lecture Notes in Computer Science, vol 4169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847250_3
Download citation
DOI: https://doi.org/10.1007/11847250_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-39098-5
Online ISBN: 978-3-540-39101-2
eBook Packages: Computer ScienceComputer Science (R0)