Skip to main content

The Parameterized Complexity of Maximality and Minimality Problems

  • Conference paper
Parameterized and Exact Computation (IWPEC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4169))

Included in the following conference series:

  • 812 Accesses

Abstract

Many parameterized problems (as the clique problem or the dominating set problem) ask, given an instance and a natural number k as parameter, whether there is a solution of size k. We analyze the relationship between the complexity of such a problem and the corresponding maximality (minimality) problem asking for a solution of size k maximal (minimal) with respect to set inclusion. As our results show maximality problems may increase the parameterized complexity, while “in terms of the W-hierarchy” minimality problems do not increase the complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arvind, V., Raman, V.: Approximation Algorithms for Some Parameterized Counting Problems. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 453–464. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Chang, C.C., Keisler, H.J.: Model Theory. In: Studies in Logic and Mathematical Foundations, vol. 73. North-Holland, Amsterdam (1990)

    Google Scholar 

  3. Chen, Y., Flum, J., Grohe, M.: Bounded nondeterminism and alternation in parameterized complexity theory. In: Proceedings of the 18th IEEE Conference on Computational Complexity CCC 2003, pp. 13–29 (2003)

    Google Scholar 

  4. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  5. Downey, R.G., Fellows, M.R., Regan, K.: Descriptive complexity and the W-hierarchy. In: Proof Complexity and Feasible Arithmetic. AMS-DIMACS Series, vol. 39, pp. 119–134 (1998)

    Google Scholar 

  6. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. SIAM Journal on Computing 24(6), 1278–1304 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fernau, H.: Parameterized algorithms: A graph-theoretic approach. Habilitationsschrift, Universität Tübingen, Tübingen, Germany (2005)

    Google Scholar 

  8. Flum, J., Grohe, M.: Fixed-parameter tractability, definability, and model checking. SIAM Journal on Computing 31(1), 113–145 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM Journal on Computing 33(4), 892–922 (2005)

    Article  MathSciNet  Google Scholar 

  10. Flum, J., Grohe, M.: Model-checking problems as a basis for parameterized intractability. Logical Methods in Computer Science 1(1) (2004)

    Google Scholar 

  11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    Google Scholar 

  12. Flum, J., Grohe, M., Weyer, M.: Bounded fixed-parameter tractability and \(\mbox{log}^{2}n\) nondeterministic bits. Journal of Computer and System Sciences 72, 34–71 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with hereditary properties. Theoretical Computer Science 289(2), 997–1008 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ritter, C.: Fagin-Definierbarkeit. Diplomarbeit, Universität Freiburg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Y., Flum, J. (2006). The Parameterized Complexity of Maximality and Minimality Problems. In: Bodlaender, H.L., Langston, M.A. (eds) Parameterized and Exact Computation. IWPEC 2006. Lecture Notes in Computer Science, vol 4169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847250_3

Download citation

  • DOI: https://doi.org/10.1007/11847250_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39098-5

  • Online ISBN: 978-3-540-39101-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics