Abstract
A basic notion shared by rough set analysis and formal concept analysis is the definability of a set of objects based on a set of properties. The two theories can be compared, combined and applied to each other based on definability. In this paper, the notion of rough set approximations is introduced into formal concept analysis. Rough set approximations are defined by using a system of definable sets. The similar idea can be used in formal concept analysis. The families of the sets of objects and the sets of properties established in formal concept analysis are viewed as two systems of definable sets. The approximation operators are then formulated with respect to the systems. Two types of approximation operators, with respect to lattice-theoretic and set-theoretic interpretations, are studied. The results provide a better understanding of data analysis using rough set analysis and formal concept analysis.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society Colloquium Publications, Providence (1967)
Buszkowski, W.: Approximation spaces and definability for incomplete information systems. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS, vol. 1424, pp. 115–122. Springer, Heidelberg (1998)
Cohn, P.M.: Universal Algebra. Harper and Row Publishers, New York (1965)
Düntsch, I., Gediga, G.: Approximation operators in qualitative data analysis. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) Theory and Applications of Relational Structures as Knowledge Instruments. LNCS, vol. 2929, pp. 214–230. Springer, Heidelberg (2003)
Gediga, G., Düntsch, I.: Modal-style operators in qualitative data analysis. In: Proceedings of the 2002 IEEE International Conference on Data Mining, pp. 155–162 (2002)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, New York (1999)
Ho, T.B.: Acquiring concept approximations in the framework of rough concept analysis. In: Proceedings of 7th European-Japanese Conference on Information Modelling and Knowledge Bases, pp. 186–195 (1997)
Hu, K., Sui, Y., Lu, Y.-c., Wang, J., Shi, C.-Y.: Concept approximation in concept lattice. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS, vol. 2035, pp. 167–173. Springer, Heidelberg (2001)
Kent, R.E.: Rough concept analysis. Fundamenta Informaticae 27, 169–181 (1996)
Pagliani, P.: From concept lattices to approximation spaces: algebraic structures of some spaces of partial objects. Fundamenta Informaticae 18, 1–25 (1993)
Pagliani, P., Chakraborty, M.K.: Information quanta and approximation spaces. I: non-classical approximation operators. In: Proceedings of IEEE International Conference on Granular Computing, pp. 605–610 (2005)
Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)
Pawlak, Z.: Rough Sets - Theoretical Aspects of Reasoning About Data. Kluwer Publishers, Dordrecht (1991)
Pei, D.W., Xu, Z.B.: Rough set models on two universes. International Journal of General Systems 33, 569–581 (2004)
Qi, J.-J., Wei, L., Li, Z.-z.: A partitional view of concept lattice. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS, vol. 3641, pp. 74–83. Springer, Heidelberg (2005)
Saquer, J., Deogun, J.S.: Formal rough concept analysis. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS, vol. 1711, pp. 91–99. Springer, Heidelberg (1999)
Saquer, J., Deogun, J.: Concept approximations based on rough sets and similarity measures. International Journal of Applied Mathematics and Computer Science 11, 655–674 (2001)
Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)
Shafer, G.: Belief functions and possibility measures. In: Bezdek, J.C. (ed.) Analysis of Fuzzy information, mathematics and logic, vol. 1, pp. 51–84. CRC Press, Boca Raton (1987)
Shao, M.-W., Zhang, W.-x.: Approximation in formal concept analysis. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS, vol. 3641, pp. 43–53. Springer, Heidelberg (2005)
Wasilewski, P.: Concept lattices vs. Approximation spaces. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS, vol. 3641, pp. 114–123. Springer, Heidelberg (2005)
Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered sets, pp. 445–470. Reidel, Dordecht (1982)
Wolski, M.: Galois connections and data analysis. Fundamenta Informaticae CSP, 1–15 (2003)
Wolski, M.: Formal concept analysis and rough set theory from the perspective of finite topological approximations. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 230–243. Springer, Heidelberg (2005)
Wong, S.K.M., Wang, L.S., Yao, Y.Y.: Interval structure: a framework for representing uncertain information. In: Uncertainty in Artificial Intelligence: Proceedings of the 8th Conference, pp. 336–343 (1993)
Wong, S.K.M., Wang, L.S., Yao, Y.Y.: On modeling uncertainty with interval structures. Computational Intelligence 11, 406–426 (1995)
Wu, Q., Liu, Z.T., Li, Y.: Rough formal concepts and their accuracies. In: Proceedings of the 2004 International Conference on Services Computing, SCC 2004, pp. 445–448 (2004)
Yao, Y.Y.: Two views of the theory of rough sets in finite universe. International Journal of Approximate Reasoning 15, 291–317 (1996)
Yao, Y.Y.: Generalized rough set models. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, pp. 286–318. Physica-Verlag, Heidelberg (1998)
Yao, Y.Y.: On Generalizing Pawlak Approximation Operators. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS, vol. 1424, pp. 298–307. Springer, Heidelberg (1998)
Yao, Y.Y.: Constructive and algebraic methods of the theory of rough sets. Information Sciences 109, 21–47 (1998)
Yao, Y.Y.: On generalizing rough set theory. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS, vol. 2639, pp. 44–51. Springer, Heidelberg (2003)
Yao, Y.: A comparative study of formal concept analysis and rough set theory in data analysis. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS, vol. 3066, pp. 59–68. Springer, Heidelberg (2004)
Yao, Y.Y.: Concept lattices in rough set theory. In: Proceedings of 23rd International Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2004, pp. 796–801 (2004)
Yao, Y.Y., Chen, Y.H.: Rough set approximations in formal concept analysis. In: Proceedings of 23rd International Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2004, pp. 73–78 (2004)
Yao, Y., Chen, Y.: Subsystem based generalizations of rough set approximations. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS, vol. 3488, pp. 210–218. Springer, Heidelberg (2005)
Yao, Y.Y., Lin, T.Y.: Generalization of rough sets using modal logic. Intelligent Automation and Soft Computing, An International Journal 2, 103–120 (1996)
Zadeh, L.A.: Fuzzy logic as a basis for a theory of hierarchical definability (THD). In: Proceedings of the 33rd International Symposium on Multiple-Valued Logic, ISMVL 2003, pp. 3–4 (2003)
Zhang, W.X., Wei, L., Qi, J.J.: Attribute reduction in concept lattice based on discernibility matrix. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS, vol. 3641, pp. 157–165. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yao, Y., Chen, Y. (2006). Rough Set Approximations in Formal Concept Analysis. In: Peters, J.F., Skowron, A. (eds) Transactions on Rough Sets V. Lecture Notes in Computer Science, vol 4100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847465_14
Download citation
DOI: https://doi.org/10.1007/11847465_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-39382-5
Online ISBN: 978-3-540-39383-2
eBook Packages: Computer ScienceComputer Science (R0)