Skip to main content

On the Semantics of Logic Programs with Preferences

  • Conference paper
Logics in Artificial Intelligence (JELIA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4160))

Included in the following conference series:

Abstract

This work is a contribution to realizing prioritized reasoning in logic programming in the presence of preference relations involving atoms. In more details, the case of dynamic preferences is investigated and a semantics interpreting each preference rule as a tool for representing a choice over alternative options is proposed. The technique, providing a new interpretation for prioritized logic programs, is inspired by the one proposed by Sakama and Inoue in [19] and enriched with the use of structural information of preference rules as proposed by Brewka et al. in [6]. Specifically, the analysis of the logic program is carried out together with the analysis of preferences in order to determine the choice order and the sets of comparable models. The proposed approach is compared with those in [6, 19]. Complexity analysis is also performed showing that the use of additional information does not increase the complexity of computing preferred stable models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., Poole, D.: CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements. JAIR 21, 135–191 (2004)

    MATH  MathSciNet  Google Scholar 

  2. Brewka, G.: Well-Founded Semantics for Extended Logic Programs with Dynamic Preferences. JAIR 4, 19–36 (1996)

    MATH  MathSciNet  Google Scholar 

  3. Brewka, G., Eiter, T.: Preferred Answer Sets for Extended Logic Programs. Artificial Intelligence 109(1-2), 297–356 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brewka, G., Eiter, T.: Prioritizing Default Logic. Intellectics and Computational Logic, 27–45 (2000)

    Google Scholar 

  5. Brewka, G.: Logic programming with ordered disjunction. AAAI/IAAI, pp. 100–105 (2002)

    Google Scholar 

  6. Brewka, G., Niemela, I., Truszczynski, M.: Answer Set Optimization. In: IJCAI, pp. 867–872 (2003)

    Google Scholar 

  7. Brewka, G.: Complex Preferences for Answer Set Optimization. In: KR, pp. 213–223 (2004)

    Google Scholar 

  8. Brewka, G., Niemela, I., Truszczynski, M.: Prioritized Component Systems. In: AAAI, pp. 596–601 (2005)

    Google Scholar 

  9. Buccafurri, F., Faber, W., Leone, N.: Disjunctive deductive databases with inheritance. In: ICLP, pp. 79–93 (1999)

    Google Scholar 

  10. Delgrande, J.P., Schaub, T., Tompits, H.: Logic Programs with Compiled Preferences. In: ECAI, pp. 464–468 (2000)

    Google Scholar 

  11. Delgrande, J.P., Schaub, T., Tompits, H.: A compilation of brewka and eiter’s approach to prioritization. In: Brewka, G., Moniz Pereira, L., Ojeda-Aciego, M., de Guzmán, I.P. (eds.) JELIA 2000. LNCS, vol. 1919, pp. 376–390. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Delgrande, J.P., Schaub, T., Tompits, H.: A Framework for Compiling Preferences in Logic Programs. Theory and Practice of Logic Programming 3(2), 129–187 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transaction On Database Systems 22(3), 364–418 (1997)

    Article  Google Scholar 

  14. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: ICLP, pp. 1070–1080 (1988)

    Google Scholar 

  15. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases. New Generation Computing 9, 365–385 (1991)

    Article  Google Scholar 

  16. Gelfond, M., Son, T.C.: Reasoning with prioritized defaults. In: Dix, J., Moniz Pereira, L., Przymusinski, T.C. (eds.) LPKR 1997. LNCS, vol. 1471, pp. 164–223. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  17. Elkabani, I., Pontelli, E., Son, T.C.: A system for computing answer sets of logic programs with aggregates. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS, vol. 3662, pp. 394–398. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  19. Sakama, C., Inoue, K.: Priorized logic programming and its application to commonsense reasoning. Artificial Intelligence 123, 185–222 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Schaub, T., Wang, K.: A Comparative Study of Logic Programs with Preference. In: IJCAI, pp. 597–602 (2001)

    Google Scholar 

  21. Van Nieuwenborgh, D., Vermeir, D.: Preferred answer sets for ordered logic programs. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS, vol. 2424, pp. 432–443. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Van Nieuwenborgh, D., Vermeir, D.: Ordered Diagnosis. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 244–258. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Van Nieuwenborgh, D., Heymans, S., Vermeir, D.: On programs with linearly ordered multiple preferences. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 180–194. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  24. Wakaki, T., Inoue, K., Sakama, C., Nitta, K.: Computing Preferred Answer Sets in Answer Set Programming. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 259–273. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Wakaki, T., Inoue, K., Sakama, C., Nitta, K.: The PLP system. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 706–709. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  26. Wang, X., You, J.H., Yuan, L.Y.: Nonmonotonic reasoning by monotonic inferences with priority conditions. In: Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 91–109. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  27. Wang, K., Zhou, L., Lin, F.: Alternating Fixpoint Theory for Logic Programs with Priority. Computational Logic, 164–178 (2000)

    Google Scholar 

  28. Zhang, Y., Foo, N.: Answer sets for prioritized logic programs. In: ILPS, pp. 69–83 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Greco, S., Trubitsyna, I., Zumpano, E. (2006). On the Semantics of Logic Programs with Preferences. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds) Logics in Artificial Intelligence. JELIA 2006. Lecture Notes in Computer Science(), vol 4160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11853886_18

Download citation

  • DOI: https://doi.org/10.1007/11853886_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39625-3

  • Online ISBN: 978-3-540-39627-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics