Abstract
Reversibility is a concept widely studied in physics as well as in computer science. Reversible computation is characterized by means of invertible properties [1]. Quantum systems evolution is described by the time evolution operator U, which is unitary and invertible; therefore such systems can implement reversibility. Reversible/invertible Cellular Automata (CA) [1] are one of the most relevant reversible computational models. Here we introduce a model for a Josephson junction ladder (JJL) device addressing reversibility: it is based on a hybrid Cellular Automata Network (CAN), the CAN2 one[2][3][4].
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Toffoli, T., et al.: Invertible cellular automata. Physica D 45, 229–253 (1990)
Calidonna, C.R., Naddeo, A.: Using a hybrid CA based model for a flexible qualitative qubit simulation: fully frustrated JJL application. In: Computing Frontiers 2005, pp. 145–151. ACM Press, New York (2005)
Calidonna, C.R., Naddeo, A.: Towards a CA model for quantum computation with fully frustrated Josephson junction arrays. Phys. Lett. A 327, 409–415 (2004)
Calidonna, C.R., Naddeo, A.: A basic qualitative CA based model of a frustrated linear Josephson junction array. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 248–257. Springer, Heidelberg (2004)
Leff, H.S., Rex, A.F.: Maxwell’s Demon: Entropy. Princeton University Press, Princeton (1990)
Toffoli, T.: Cellular Automata Mechanics, Ph.D. Thesis, Univ. of Michigan (1977)
Alonso-Sanz, R., Martin, M.: Three-state one-dimensional cellular automata with memory. Chaos Sol. Frac. 21, 809–834 (2004)
Granato, E.: Phase transitions in Josephson junction ladders in a magnetic field. Phys. Rev. B 42, 4797–4799 (1990)
Fulde, P., Ferrel, R.A.: Superconductivity in a strong spin–exchange field. Phys. Rev. 135, A550–A563 (1964)
Blanter, Y.: Duality in Josephson junction arrays. Nucl. Phys. B S58, 79–90 (1997)
Naddeo, A., et al.: A conformal field theory description of magnetic flux fractionalization in Josephson junction ladders. Eur. Phys. J. B49, 83–91 (2006)
Galindo, A., Martin-Delgado, M.A.: Information and computation: classical and quantum aspects. Rev. Mod. Phys. 74, 347–423 (2002)
Goldobin, E., et al.: Ground states in 0 − π long Josephson junctions. Phys. Rev. B 67, 224515/1-9 (2003)
Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)
Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)
Deutsch, D.: Quantum computational networks. Proc. R. Soc. London A 425, 73–90 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Calidonna, C.R., Naddeo, A. (2006). Introducing Reversibility in a High Level JJL Qubit Model According to CAN2 Paradigm. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds) Cellular Automata. ACRI 2006. Lecture Notes in Computer Science, vol 4173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11861201_26
Download citation
DOI: https://doi.org/10.1007/11861201_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40929-8
Online ISBN: 978-3-540-40932-8
eBook Packages: Computer ScienceComputer Science (R0)