Skip to main content

Introducing Reversibility in a High Level JJL Qubit Model According to CAN2 Paradigm

  • Conference paper
Cellular Automata (ACRI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4173))

Included in the following conference series:

Abstract

Reversibility is a concept widely studied in physics as well as in computer science. Reversible computation is characterized by means of invertible properties [1]. Quantum systems evolution is described by the time evolution operator U, which is unitary and invertible; therefore such systems can implement reversibility. Reversible/invertible Cellular Automata (CA) [1] are one of the most relevant reversible computational models. Here we introduce a model for a Josephson junction ladder (JJL) device addressing reversibility: it is based on a hybrid Cellular Automata Network (CAN), the CAN2 one[2][3][4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Toffoli, T., et al.: Invertible cellular automata. Physica D 45, 229–253 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Calidonna, C.R., Naddeo, A.: Using a hybrid CA based model for a flexible qualitative qubit simulation: fully frustrated JJL application. In: Computing Frontiers 2005, pp. 145–151. ACM Press, New York (2005)

    Google Scholar 

  3. Calidonna, C.R., Naddeo, A.: Towards a CA model for quantum computation with fully frustrated Josephson junction arrays. Phys. Lett. A 327, 409–415 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Calidonna, C.R., Naddeo, A.: A basic qualitative CA based model of a frustrated linear Josephson junction array. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 248–257. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Leff, H.S., Rex, A.F.: Maxwell’s Demon: Entropy. Princeton University Press, Princeton (1990)

    Book  Google Scholar 

  6. Toffoli, T.: Cellular Automata Mechanics, Ph.D. Thesis, Univ. of Michigan (1977)

    Google Scholar 

  7. Alonso-Sanz, R., Martin, M.: Three-state one-dimensional cellular automata with memory. Chaos Sol. Frac. 21, 809–834 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Granato, E.: Phase transitions in Josephson junction ladders in a magnetic field. Phys. Rev. B 42, 4797–4799 (1990)

    Article  Google Scholar 

  9. Fulde, P., Ferrel, R.A.: Superconductivity in a strong spin–exchange field. Phys. Rev. 135, A550–A563 (1964)

    Article  Google Scholar 

  10. Blanter, Y.: Duality in Josephson junction arrays. Nucl. Phys. B S58, 79–90 (1997)

    MathSciNet  Google Scholar 

  11. Naddeo, A., et al.: A conformal field theory description of magnetic flux fractionalization in Josephson junction ladders. Eur. Phys. J. B49, 83–91 (2006)

    Google Scholar 

  12. Galindo, A., Martin-Delgado, M.A.: Information and computation: classical and quantum aspects. Rev. Mod. Phys. 74, 347–423 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goldobin, E., et al.: Ground states in 0 − π long Josephson junctions. Phys. Rev. B 67, 224515/1-9 (2003)

    Google Scholar 

  14. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  16. Deutsch, D.: Quantum computational networks. Proc. R. Soc. London A 425, 73–90 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Calidonna, C.R., Naddeo, A. (2006). Introducing Reversibility in a High Level JJL Qubit Model According to CAN2 Paradigm. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds) Cellular Automata. ACRI 2006. Lecture Notes in Computer Science, vol 4173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11861201_26

Download citation

  • DOI: https://doi.org/10.1007/11861201_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40929-8

  • Online ISBN: 978-3-540-40932-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics