Skip to main content

A Bi-fluid Lattice Boltzmann Model for Water Flow in an Irrigation Channel

  • Conference paper
Cellular Automata (ACRI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4173))

Included in the following conference series:

  • 2301 Accesses

Abstract

This paper is devoted to modelling of water flow dynamics in open-channels for the goal of controlling irrigation systems. We expose and validate a methodology based on Lattice Boltzmann models as an alternative to the commonly used Saint-Venant equations. We adapt a bi-fluid model to the case of a free surface water flow. A gravity force is applied to the heaviest fluid as to maintain it at the bottom. The considered boundary conditions take into account the control actions provided by the two underflow gates located at the left and right ends of the reach. Numerical results for density profiles are given to validate our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bhatnager, P., Gross, E., Krook, M.: A model for collision process in gases. Phys. Rev. 94, 511, 1654

    Google Scholar 

  2. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Ann. Rev. Fluid Mech. 30, 329–364 (1998); Chen, H., Chen, S., Matthaeus, W., Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. A 45, R5339–R5342 (1992)

    Google Scholar 

  3. Chopard, B., Luthi, P., Masselot, A.: Cellular automata and lattice Boltzmann techniques: An approach to model and simulate complex systems. Advances in Complex Systems 5(2) (2002)

    Google Scholar 

  4. Chow, V.T.: Open-channels Hydrolics, International Students edn., p. 572. McGraw-Hill, New York (1954)

    Google Scholar 

  5. Colley, R.L., Moin, S.A.: Finite element solution of St Venant equation. Journal of hydraulical engineering. Division ASCE 102(NHY6), 759–775 (1976)

    Google Scholar 

  6. Cunge, J.A.: Simulation des écoulements non permanents dans les riviéres et canaux, Ecole Nationale Supérieure d’Hydraulique de Grenoble, p. 173 (1988)

    Google Scholar 

  7. Cunge, J.A., Holly, F.M., Verwey, A.: Practical aspects of computational river hydraulics, p. 420. Pitman Advanced Publishing Program (1980)

    Google Scholar 

  8. Graf, W.H.: Hydraulique fluviale, Collection traité de genie civil. Ecole polytechnique federale de Lausanne. Presses polytechniques et universitaire romandes (1993)

    Google Scholar 

  9. He, X., Zou, Q.: Analysis and boundary condition of the Lattice Boltzmann BGK Model with two velocities components, Los Alamos preprint, LA-UR-95-2293

    Google Scholar 

  10. He, X., Zou, Q.: On pressure and velocity flow boundary conditions for the lattice Boltzmann BGK model, Cellular Automata and Lattice Gases, abstract comp-gas/9508001 (1995), http://arxiv.org/abs/comp-gas/9508001

  11. Mahmood, M.A., Yevjevich, V.: Unsteady Flow in Open Channels, vol. 1 and 2. Water Ressources Publications, Fort Collins USA

    Google Scholar 

  12. Malaterre, P.-O., Baume, J.-P.: Modeling and regulation of irrigation canals: ongoing researches

    Google Scholar 

  13. Malaterre, P.-O., Rogers, D., Schuurmans, J.: Classification of canal control algorithms. Journal of irrigation and drainage engeneering 98 I24(1), 3–10

    Google Scholar 

  14. Martys, N.S., Chen, H.: Simulation of multi-components fluids in complex three-dimensional geometries by the Lattice Boltzmann method. Phys. Review E 53(1) (1996)

    Google Scholar 

  15. Qian, Y., d’Humières, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equations. Europhys. Lett. 17(6), 470–484 (1992) 94, 511, 1654

    Article  Google Scholar 

  16. Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Review E 47(3) (1993)

    Google Scholar 

  17. Shan, X., Chen, H.: Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Review 49(4) (1994)

    Google Scholar 

  18. Shand, M.J.: Automatic downstreem control systems for irrigation canals, PhD, University of California, Berkley, p. 159 (1971)

    Google Scholar 

  19. Strelkoff, T.: Numerical solution of St Venant equation. Journal of hydraulical engineering. Division ASCE 96(HY1), 223–252 (1970)

    Google Scholar 

  20. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford Science Publications, Oxford (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marcou, O., El Yacoubi, S., Chopard, B. (2006). A Bi-fluid Lattice Boltzmann Model for Water Flow in an Irrigation Channel. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds) Cellular Automata. ACRI 2006. Lecture Notes in Computer Science, vol 4173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11861201_44

Download citation

  • DOI: https://doi.org/10.1007/11861201_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40929-8

  • Online ISBN: 978-3-540-40932-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics