Abstract
We investigate the performances and collective task-solving capabilities of complex networks of automata using the density problem as a typical case. We show by computer simulations that evolved Watts–Strogatz small-world networks have superior performance with respect to scale-free graphs of the Albert–Barabási type. Besides, Watts–Strogatz networks are much more robust in the face of transient uniformly random perturbations. This result differs from information diffusion on scale-free networks, where random faults are highly tolerated.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)
Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)
Garzon, M.: Models of Massive Parallelism: Analysis of Cellular Automata and Neural Networks. Springer, Berlin (1995)
Kauffman, S.A.: The Origins of Order. Oxford University Press, New York (1993)
Watts, D.J.: Small worlds: The Dynamics of Networks between Order and Randomness. Princeton University Press, Princeton NJ (1999)
Serra, R., Villani, M.: Perturbing the regular topology of cellular automata: implications for the dynamics. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS, vol. 2493, pp. 168–177. Springer, Heidelberg (2002)
Tomassini, M., Giacobini, M., Darabos, C.: Evolution of small-world networks of automata for computation. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 672–681. Springer, Heidelberg (2004)
Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47–97 (2002)
Land, M., Belew, R.K.: No perfect two-state cellular automata for density classification exists. Physical Review Letters 74(25), 5148–5150 (1995)
Capcarrère, M.S., Sipper, M., Tomassini, M.: Two-state, r=1 cellular automaton that classifies density. Physical Review Letters 77(24), 4969–4971 (1996)
Fukś, H.: Solution of the density classification problem with two cellular automata rules. Physical Review E 55(3), 2081–2084 (1997)
Crutchfield, J.P., Mitchell, M., Das, R.: Evolutionary design of collective computation in cellular automata. In: Crutchfield, J.P., Schuster, P. (eds.) Evolutionary Dynamics: Exploring the Interplay of Selection, Accident, Neutrality, and Function, pp. 361–411. Oxford University Press, Oxford (2003)
Tomassini, M., Giacobini, M., Darabos, C.: Evolution and dynamics of small-world cellular automata. Complex Systems 15, 261–284 (2005)
Sipper, M., Tomassini, M., Beuret, O.: Studying probabilistic faults in evolved non-uniform cellular automata. International Journal of Modern Physics C 7(6), 923–939 (1996)
Albert, R., Jeong, H., Barabási, L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Darabos, C., Giacobini, M., Tomassini, M. (2006). Scale-Free Automata Networks Are Not Robust in a Collective Computational Task. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds) Cellular Automata. ACRI 2006. Lecture Notes in Computer Science, vol 4173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11861201_59
Download citation
DOI: https://doi.org/10.1007/11861201_59
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40929-8
Online ISBN: 978-3-540-40932-8
eBook Packages: Computer ScienceComputer Science (R0)