Abstract
This contribution presents a variation of the Wiener filter criterion, i.e. minimizing the mean squared error, by combining it with the main principle of normalized convolution, i.e. the introduction of prior information in the filter process via the certainty map. Thus, we are able to optimize a filter according to the signal and noise characteristics while preserving edges in images. In spite of its low computational costs the proposed filter schemes outperforms state of the art filter methods working also in the spatial domain. Furthermore, the Wiener filter paradigm is extended from scalar valued data to tensor valued data.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wiener, N.: The Extrapolation, Interpolation, and Smoothing of Stationary Time Series with Engineering Applications. J. Wiley, Chichester (1949)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (1990)
Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60 (1992)
Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (2002)
Felsberg, M., Forssén, P.E., Scharr, H.: Channel smoothing: Efficient robust smoothing of low-level signal features. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 209–222 (2006)
Donoho, D.L.: De-noising by soft thresholding. IEEE Transactions on Inform. Theory 41 (1995)
Portilla, J., Strela, V., Wainwright, M., Simoncelli, E.P.: Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans Image Processing 12 (2003)
Felsberg, M.: Wiener Channel Smoothing: Robust Wiener Filtering of Images. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 468–475. Springer, Heidelberg (2005)
Knutsson, H., Westin, C.F.: Normalized and differential convolution: Methods for interpolation and filtering of incomplete and uncertain data. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (1993)
Knutsson, H., Granlund, G.: Texture analysis using two-dimensional quadrature filters. In: IEEE Workshop Computer Architecture for Pattern Analysis and Image Data Base Management, Pasadena (CA) (1983)
Bigün, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: Proc. ICCV, pp. 433–438. IEEE, Los Alamitos (1987)
Weickert, J., Brox, T.: Diffusion and regularization of vector- and matrix-valued images. In: Nashed, M.Z., Scherzer, O. (eds.) Inverse Problems, Image Analysis, and Medical Imaging. Contemporary Mathematics, AMS, Providence, pp. 251–268 (2002)
Tschumperl, D., Deriche, R.: Diffusion tensor regularization with constraints preservation (2001)
van den Boomgaard, R., van de Weijer, J.: Robust estimation of orientation for texture analysis. In: Proceedings Texture 2002, 2nd International Workshop on Texture Analysis and Synthesis (2002)
Nagel, H., Gehrke, A.: Spatiotemporally Adaptive Estimation and Segmentation of Of-fields. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 305–321. Springer, Heidelberg (1998)
Martin-Fernandez, M., San-Jose, R., Westin, C.F., Alberola-Lopez, C.: A Novel Gauss-Markov Random Field Approach for Regularization of Diffusion Tensor Maps. In: Moreno-DÃaz Jr., R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 506–517. Springer, Heidelberg (2003)
MartÃn-Fernández, M., Alberola-López, C., Ruiz-Alzola, J., Westin, C.-F.: Regularization of Diffusion Tensor Maps Using a Non-Gaussian Markov Random Field Approach. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 92–100. Springer, Heidelberg (2003)
MartÃn-Fernández, M., Westin, C.-F., Alberola-López, C.: 3D Bayesian Regularization of Diffusion Tensor MRI Using Multivariate Gaussian Markov Random Fields. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 351–359. Springer, Heidelberg (2004)
Mühlich, M., Mester, R.: A statistical unification of image interpolation, error concealment, and source-adapted filter design. In: Proc. Sixth IEEE Southwest Symposium on Image Analysis and Interpretation, Lake Tahoe, NV/USA (2004)
Kay, S.M.: Fundamentals of Statistical Signal Processing. Estimation Theory, vol. I. Prentice Hall PTR, Englewood Cliffs (1993)
Brox, T., Weickert, J., Burgeth, B., Mrázek, P.: Nonlinear structure tensors. Revised version of technical report no. 113, Saarland University, Saarbrücken, Germany (2004)
Winkler, G.: Image Analysis, Random Fields and Markov Chain Monte Carlo Methods. A Mathematical Introduction. Springer, Berlin (2002)
Lawson, C., Hanson, R.: Solving Least-Squares Problems. Prentice-Hall, Englewood Cliffs (1974)
Westin, C.-F., Knutsson, H.: Tensor Field Regularization Using Normalized Convolution. In: Moreno-DÃaz Jr., R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 564–572. Springer, Heidelberg (2003)
Lim, J.D.: Two-Dimensional Signal and Image Processing. Prentice-Hall, Englewood Cliffs (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Krajsek, K., Mester, R. (2006). The Edge Preserving Wiener Filter for Scalar and Tensor Valued Images. In: Franke, K., Müller, KR., Nickolay, B., Schäfer, R. (eds) Pattern Recognition. DAGM 2006. Lecture Notes in Computer Science, vol 4174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11861898_10
Download citation
DOI: https://doi.org/10.1007/11861898_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44412-1
Online ISBN: 978-3-540-44414-5
eBook Packages: Computer ScienceComputer Science (R0)