Skip to main content

Multi-step Multi-camera View Planning for Real-Time Visual Object Tracking

  • Conference paper
Pattern Recognition (DAGM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4174))

Included in the following conference series:

  • 2298 Accesses

Abstract

We present a new method for planning the optimal next view for a probabilistic visual object tracking task. Our method uses a variable number of cameras, can plan an action sequence several time steps into the future, and allows for real-time usage due to a computation time which is linear both in the number of cameras and the number of time steps. The algorithm can also handle object loss in one, more or all cameras, interdependencies in the camera’s information contribution, and variable action costs.

We evaluate our method by comparing it to previous approaches with a prerecorded sequence of real world images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Paletta, L., Pinz, A.: Active object recognition by view integration and reinforcement learning. Robotics and Autonomous Systems 31(1-2), 71–86 (2000)

    Article  Google Scholar 

  2. Denzler, J., Brown, C.: Information Theoretic Sensor Data Selection for Active Object Recognition and State Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 145–157 (2002)

    Article  Google Scholar 

  3. Deinzer, F., Denzler, J., Niemann, H.: Viewpoint Selection – Planning Optimal Sequences of Views for Object Recognition. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 65–73. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Fayman, J., Sudarsky, O., Rivlin, E., Rudzsky, M.: Zoom tracking and its applications. Machine Vision and Applications 13, 25–37 (2001)

    Article  Google Scholar 

  5. Tordoff, B., Murray, D.: Reactive zoom control while tracking using an affine camera. In: Proc. 12th British Machine Vision Conference, September 2001, vol. 1, pp. 53–62 (2001)

    Google Scholar 

  6. Micheloni, C., Foresti, G.L.: Zoom on Target While Tracking. In: Proceedings of the International Conference on Image Processing, Genua, Italy, vol. 3, pp. 117–120 (2005)

    Google Scholar 

  7. Kalandros, M.K., Pao, L.Y., Ho, Y.: Randomization and super-heuristics in choosing sensor sets in target tracking applications. In: Proc. IEEE Conf. Decision and Control, Phoenix, AZ, pp. 1803–1808 (1999)

    Google Scholar 

  8. Denzler, J., Zobel, M., Niemann, H.: Information Theoretic Focal Length Selection for Real-Time Active 3-D Object Tracking. In: International Conference on Computer Vision, Nice, France, pp. 400–407 (2003)

    Google Scholar 

  9. Deutsch, B., Zobel, M., Denzler, J., Niemann, H.: Multi-step entropy based sensor control for visual object tracking. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 359–366. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Deutsch, B., Deinzer, F., Zobel, M., Denzler, J.: Multi-Step Active Object Tracking with Entropy Based Optimal Actions Using the Sequential Kalman Filter. In: Araújo, H., Vieira, A., Braz, J., Encarnação, B., Carvalho, M. (eds.) Proceedings of the International Conference on Image Processing, Setúbal, Portugal, vol. 2, pp. 169–176. INSTICC Press, Setúbal (2005)

    Google Scholar 

  11. Kalman, R.: A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 35–44 (1960)

    Google Scholar 

  12. Chui, C.K., Chen, G.: Kalman Filtering. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  13. Bar-Shalom, Y., Fortmann, T.: Tracking and Data Association. Academic Press, Boston (1988)

    MATH  Google Scholar 

  14. Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 661–675. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Törn, A., Žilinskas, A.: Global Optimization. LNCS, vol. 350. Springer, Heidelberg (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deutsch, B., Wenhardt, S., Niemann, H. (2006). Multi-step Multi-camera View Planning for Real-Time Visual Object Tracking. In: Franke, K., Müller, KR., Nickolay, B., Schäfer, R. (eds) Pattern Recognition. DAGM 2006. Lecture Notes in Computer Science, vol 4174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11861898_54

Download citation

  • DOI: https://doi.org/10.1007/11861898_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44412-1

  • Online ISBN: 978-3-540-44414-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics