Abstract
Industrial part assembly has come a long way and so has visual quality inspection. Nevertheless, the key issue in automated industrial quality inspection, i.e. the pose recovery of the objects under inspection, is still a challenging task for assemblies with more than two rigid parts. This paper presents a system for the pose recovery of assemblies consisting of an arbitrary number of rigid subparts. In an offline stage, the system extracts edge information from CAD models. Online, the system uses a novel kernel particle filter to recover the full pose of the visible subparts of the assembly under inspection. The accuracy of the pose estimation is evaluated and compared to state-of-the-art systems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Goddard, J.S.: Pose and Motion Estimation from Vision using Dual Quaternion-Based Extended Kalman Filtering. PhD thesis, Univ. of Tenessee, Knoxville (1997)
Rosenhahn, B., Sommer, G.: Pose Estimation in Conformal Geometric Algebra. Journal of Mathematical Imaging and Vision 22, 27–70 (2005)
Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)
Chang, C., Ansari, R.: Kernel Particle Filter: Iterative Sampling for Efficient Visual Tracking. In: ICIP 2003, pp. 977–980 (2003)
Schmidt, J., Kwolek, B., Fritsch, J.: Kernel Particle Filter for Real-Time 3D Body Tracking in Monocular Color Images. In: Proc. of Automatic Face and Gesture Recognition, Southampton, UK, pp. 567–572. IEEE, Los Alamitos (2006)
Chang, C., Ansari, R.: Kernel Particle Filter for Visual Tracking. IEEE Signal Processing Letters 12(3), 242–245 (2005)
Comaniciu, D., Ramesh, V., Meer, P.: The Variable Bandwidth Mean Shift and Data-Driven Scale Selection. In: ICCV 2001, vol. 1, pp. 438–445. IEEE, Los Alamitos (2001)
Smith, S.M., Brady, J.M.: SUSAN - a new approach to low level image processing. International Journal of Computer Vision 23(1), 45–78 (1997)
Borgefors, G.: Distance Transformations in Digital Images. Computer Vision, Graphics, and Image Processing 34, 344–371 (1986)
Stößel, D., Hanheide, M., Sagerer, G., Krüger, L., Ellenrieder, M.M.: Feature and Viewpoint Selection for Industrial Car Assembly. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 528–535. Springer, Heidelberg (2004)
Isard, M., Blake, A.: ICONDENSATION: Unifying Low-Level and High-Level Tracking in a Stochastic Framework. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 893–908. Springer, Heidelberg (1998)
Rucklidge, W.: Efficient Visual Recognition Using the Hausdorff Distance. LNCS, vol. 1173. Springer, Heidelberg (1996)
Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley & Sons, New York (1973)
Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)
Kölzow, T.: System zur Klassifikation und Lokalisation von 3D-Objekten durch Anpassung vereinheitlichter Merkmale in Bildfolgen. PhD thesis, Bielefeld University (2002) (in German)
von Bank, C., Gavrila, D.M., Wöhler, C.: A Visual Quality Inspection System Based on a Hierarchical 3D Pose Estimation Algorithm. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 179–186. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stößel, D., Sagerer, G. (2006). Kernel Particle Filter for Visual Quality Inspection from Monocular Intensity Images. In: Franke, K., Müller, KR., Nickolay, B., Schäfer, R. (eds) Pattern Recognition. DAGM 2006. Lecture Notes in Computer Science, vol 4174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11861898_60
Download citation
DOI: https://doi.org/10.1007/11861898_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44412-1
Online ISBN: 978-3-540-44414-5
eBook Packages: Computer ScienceComputer Science (R0)