Skip to main content

Stable Wave Detector of Blobs in Images

  • Conference paper
Pattern Recognition (DAGM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4174))

Included in the following conference series:

Abstract

Stable Wave Detector (SWD) is a new multiscale landmark detector in the intensity image. SWD belongs to a group of interest-point-like operators aiming at detecting repeatedly distinguished entities regardless of their semantics. The speed and the robustness of landmark detection and the precision of landmark localization are main issues. The target landmarks are blobs which correspond to local maxima/minima of intensity (positive and negative peaks). The detector is based on the phase of the first harmonic wave in the moving window. The localization is a result of an integral transformation rather than a derivative. Thus, the blob detector is inherently robust to noise. The SWD provides subpixel localization of blobs together with the estimate of its precision, the measure of the strength/significance and the estimate of the size/scale for each blob.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Deriche, R., Giraudon, G.: A computational approach for corner and vertex detection. IJCV 10(2), 101–124 (1993)

    Article  Google Scholar 

  2. Dupač, J., Hlaváč, V.: Stable wave detector for precise and fast detection of blobs in the image. Research Report CTU–CMP–2006–03, Center for Machine Perception, K13133 FEE Czech Technical University, Prague, Czech Republic (April 2006)

    Google Scholar 

  3. Fraundorfer, F., Bischof, H.: Evaluation of local detectors on non-planar scenes. In: Proc. of 28th Workshop of the Austrian Association for Pattern Recognition (AGM/AAPR), Osterreichische Computer Gesellschaft 3-85403-179-3, Hagenberg, pp. 125–132 (2004)

    Google Scholar 

  4. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. of 4th Alvey Vision Conference, pp. 147–151 (March 1988)

    Google Scholar 

  5. Kadir, T., Zisserman, A., Brady, M.: An Affine Invariant Salient Region Detector. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 228–241. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Loupias, E., Sebe, N.: Wavelet-Based Salient Points: Applications to Image Retrieval Using Color and Texture Features. In: Laurini, R. (ed.) VISUAL 2000. LNCS, vol. 1929, pp. 223–232. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proc. of IEEE International Conference on Computer Vision (ICCV 1999), pp. 1150–1157. IEEE Computer Society, Los Alamitos (1999)

    Google Scholar 

  8. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Rosin, P.L., Marshall, D. (eds.) Proc. of the British Machine Vision Conference, London, UK, vol. 1, pp. 384–393. BMVA (September 2002)

    Google Scholar 

  9. Mikolajczyk, K., Schmid, C.: Scale & affine invariant point detector. International Journal of Computer Vision 60(1), 63–86 (2004)

    Article  Google Scholar 

  10. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., van Gool, L.: A comparison of affine region detectors. International Journal of Computer Vision 65(7), 43–72 (2005)

    Article  Google Scholar 

  11. Moravec, H.P.: Towards automatic visual obstacle avoidance. In: Proc. of The 5th International Joint Conference on Artificial Intelligence. IJCAI, p. 584. MIT Press, Cambridge (1977)

    Google Scholar 

  12. Nistér, D., Naroditsky, O., Bergen, J.R.: Visual odometry. In: Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004), pp. 652–659. IEEE Computer Society Press, Los Alamitos (2004)

    Chapter  Google Scholar 

  13. Pajdla, T., Hlaváč, V.: Zero Phase Representation of Panoramic Images for Image Based Localization. In: Solina, F., Leonardis, A. (eds.) CAIP 1999. LNCS, vol. 1689, pp. 550–557. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Schaffalitzky, F., Zisserman, A.: Multi-view Matching for Unordered Image Sets, or How Do I Organize My Holiday Snaps? In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 414–431. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. International Journal of Computer Vision 37(2), 151–172 (2000)

    Article  MATH  Google Scholar 

  16. Tuytelaars, T., Van Gool, L.: Content-based image retrieval based on local affinely invariant regions. In: International Conference on Visual Information Systems, pp. 493–500 (1999)

    Google Scholar 

  17. Tuytelaars, T., Van Gool, L.: Matching widely separated views based on affine invariant regions. International Journal on Computer Vision 59(1), 61–85 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dupač, J., Hlaváč, V. (2006). Stable Wave Detector of Blobs in Images. In: Franke, K., Müller, KR., Nickolay, B., Schäfer, R. (eds) Pattern Recognition. DAGM 2006. Lecture Notes in Computer Science, vol 4174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11861898_76

Download citation

  • DOI: https://doi.org/10.1007/11861898_76

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44412-1

  • Online ISBN: 978-3-540-44414-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics