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Abstract. This is a study of some of the elementary statistical prop-
erties of the bitwise exclusive or of two maximum period feedback with
carry shift register sequences. We obtain conditions under which the
resulting sequences has the maximum possible period, and we obtain
bounds on the variation in the distribution of blocks of a fixed length.
This may lead to improved design of stream ciphers using FCSRs.
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1 Introduction

The summation combiner [8] is a stream cipher in which two binary m-sequences
are combined using addition-with-carry. This cipher attracted considerable at-
tention during the 1980’s because it was fast, simple to construct in hardware,
and the linear span of the resulting combined sequence was known to approach
its period, which is approximately the product of the periods of the constituent
sequences.

The security of the summation combiner was called into question following
the introduction of feedback-with-carry shift registers, or FCSRs [4], [5], and
the associated rational approximation algorithm [5]. This is because the 2-adic
complexity of the output of the summation combiner is no more than the sum
of the 2-adic complexities of the constituent sequences. Nevertheless, the sum-
mation combiner remains an interesting and difficult to analyze procedure for
generating pseudorandom sequences and many basic questions concerning this
combiner have never been satisfactorily addressed.

One might just as well consider the reverse procedure, and combine two binary
FCSR sequences using binary addition (“XOR”). Sequences of this type are just
as difficult to analyze, which perhaps explains why they have been largely ignored
despite having been suggested ten years ago [5], [9].
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Recall that a binary �-sequence is a maximal length FCSR sequence [4] of 0’s
and 1’s. Such a sequence is obtained whenever the connection integer q ≥ 3 is
a prime number such that 2 is a primitive root modulo q. The period of such
an �-sequence is q − 1 and it is known to have a number of desirable statistical
properties, one of which is that the number of occurrences of any given block
f = (f0, f1, · · · , fk−1) of size k differs at most by one, as f ranges over all 2k

possibilities [4].
In this paper we consider “combining” two distinct �-sequences a = (a0, a1,

· · · ) and b = (b0, b1, · · · ) using addition modulo 2 (or “XOR”, denoted ⊕) to
obtain a sequence c = (c0, c1, . . .) with cj = aj ⊕ bj . Suppose a is the �-sequence
that is generated by an FCSR with connection polynomial q and that b is the
�-sequence that is generated by an FCSR with connection polynomial r. We are
interested in the resulting sequence c, perhaps as a possible constituent in a
stream cipher — there is experimental evidence (not reported on in this paper)
that the 2-adic complexity is close to half its period.

We first show that the combined sequence c will have maximal period if one
of the periods, say, q−1 is divisible by 4, if the other period, r−1 is not divisible
by 4, and if no odd prime divides both.

We also consider the distribution properties of these sequences. That is, we
bound the number of occurrences of each block of size k within such a sequence.
We are able to show that by careful choice of the constituent sequences it is
possible to guarantee good distribution properties for the resulting combined
sequence. The precise statement is given in Theorem 3.

2 Recollections on Binary FCSR Sequences

Let q > 2 be a prime number, the connection integer. Let s = ordq(2) be the
smallest integer such that 2s ≡ 1 (mod q) or equivalently, such that q divides
2s − 1.

For any integer h, with 0 ≤ h < q, the base-2 expansion of the fraction h/q
will be periodic with (minimal) period s. It is a binary sequence, meaning that
its symbols are taken from the alphabet Σ = Z/(2). These sequences have been
studied since the time of Gauss [3], [2] (p. 163). The reverse of this sequence is
known as an FCSR sequence [4], [5] since it is the output sequence of a feedback
with carry shift register with connection integer q, with cell contents taken from
Z/(2), and with initial loading that depends on h, cf. [5]. This FCSR sequence
can also be described as the 2-adic expansion of the fraction −h/q. To be explicit,
let 0 ≤ h ≤ q and suppose the 2-adic expansion

−h

q
= a0 + a12 + a222 + · · · (1)

(with ai ∈ {0, 1}) is periodic with period s. Then the sequence a = a0, a1, · · · is
an FCSR sequence. Its reverse is the base 2 expansion of the fraction h/q :
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h

q
=

as−1

2
+

as−2

22
+ · · · + a0

2s−1
+

as−1

2s
+ · · · (2)

as may easily be seen by summing the geometric series in (1) and (2).
The period s of such a sequence satisfies 0 ≤ s ≤ q−1. The period is maximal

(s = q−1) if and only if 2 is a primitive root modulo q, meaning that the distinct
powers 2j modulo q, account for all the nonzero elements in Z/(q). In this case
the base 2 expansion of h/q is known as a 1/q sequence [1] or as a Barrows-
Mandelbaum codeword [7]. Its reverse, the corresponding FCSR sequence, is
known as a (binary) �-sequence.

It is also known [5] that there exists B ∈ Z/(q) (the choice of which depends
on the value of h) such that

aj = B2−j (mod q) (mod 2) (3)

for all j, meaning that first B2−j ∈ Z/(q) is computed; this number is rep-
resented as an integer between 0 and q − 1, and it is then reduced modulo 2.
The q − 1 possible different non-zero choices of B ∈ Z/(q) give cyclic shifts of
the resulting sequence a, and this accounts for all the binary �-sequences with
connection integer q. The following fact was observed over a hundred years ago
[2, p. 163].

Lemma 1. Let a = a0, a1, a2, · · · be the binary �-sequence corresponding to the
fraction −h/q where 2 is primitive modulo the (odd) prime q, and where 0 <
h < q. Then

aj+ q−1
2

≡ q − aj ≡ q0 − aj (mod 2),

where q0 = q (mod 2). In other words, within any period of the �-sequence a,
the second half is the complement of the first half, [6].

Proof. Since 2 is primitive mod q, we have: 2q−1 ≡ 1 (mod q) hence 2
q−1
2 ≡

−1 (mod q) so 2−
q−1
2 ≡ −1 (mod q). It suffices to prove the lemma for any

single shift of the sequence a. Accordingly, we may take B = 1 in equation (3),
then calculate

aj+ q−1
2

≡ −2−j (mod q) (mod 2)

≡ (q − 2−j) (mod q) (mod 2)

If Aj ∈ {1, 2, · · · , q − 1} is the positive integer representation of the number
2−j (mod q) ∈ Z/(q) then 0 < q − Aj < q so q − Aj is the positive integer
representation of the number q− 2−j (mod q) ∈ Z/(q). Therefore, reducing this
equation modulo 2 gives

aj+ q−1
2

≡ q0 − aj (mod 2)

where q0 = q (mod 2) ∈ Z/(2).
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3 Period

In this section we describe a very general criterion which guarantees that the
period of a sequence c obtained by “combining” two periodic sequences a,b is
the least common multiple of the periods of a and b. It would surprise us to find
that this theorem is unknown, but we are not aware of its having appeared in
print.

Let Σ be an alphabet (i.e., a finite set). Let � be a binary operation on Σ.
That is, � : Σ × Σ → Σ. We write a � b for the value of � at (a, b).

Definition 1. The operation � is cancellative if for all a, b, c ∈ Σ, if a � b =
a � c, then b = c.

Theorem 1. Let a = (a0, a1, · · · ) be a periodic sequence of (minimal) period n
with each ai ∈ Σ, and let b = (b0, b1, · · · ) be a periodic sequence of (minimal)
period m with each bi ∈ Σ. Let c = (c0, c1, · · · ) be the sequence with ci = ai � bi

for each i. Suppose that for every prime r, the largest power of r that divides n
is not equal to the largest power of r that divides m. Then c is periodic and the
period of c is the least common multiple of n and m.

Proof. It is straightforward to see that c is periodic and its (least) period di-
vides the least common multiple of n and m. Let t denote the (least) period of
c. Suppose that t < lcm(n, m). Then there is some prime r so that t divides
lcm(n, m)/r. In particular, c has lcm(n, m)/r as a period.

Suppose that the largest power of r dividing n is re and the largest power of
r dividing m is rf . By symmetry we may assume that e < f . Thus the largest
power of r dividing lcm(n, m)/r is rf−1, so n divides lcm(n, m)/r and m does
not divide lcm(n, m)/r. For every i we have

ai � bi = ci

= ci+lcm(n,m)/r

= ai+lcm(n,m)/r � bi+lcm(n,m)/r

= ai � bi+lcm(n,m)/r.

By the cancellative property of �, it follows that for every i,

bi = bi+lcm(n,m)/r.

But this contradicts the fact that lcm(n, m)/r is not a multiple of the minimal
period of b, and thus proves the theorem. �

Corollary 1. Let a = (a0, a1, · · · ), b = (b0, b1, · · · ) be binary �-sequences with
connection integers q and r respectively. Suppose that 4 divides q − 1 but does
not divide r − 1 and that no odd prime divides both q − 1 and r − 1 (so that
gcd(q − 1, r − 1) = 2). Then the sequence c = a⊕ b (mod p) obtained by taking
the termwise sum, modulo 2, of a and b has period (q − 1)(r − 1)/2.
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4 Distributions

By an occurrence of a block e = (e0, · · · , ek−1) in a sequence a of period n we
mean an index i, 0 ≤ i < n so that ai = e0, ai+1 = e1, · · · , ai+k−1 = ek−1. Recall
the following result of [1] (Theorem 1). See also [5].

Theorem 2. Let a = (a0, a1, · · · ) be a binary �-sequence with connection integer
q. Then the number of occurrences of any block e = (e0, e2, · · · , ek−1) of size k
in a varies at most by 1 as the block e varies over all 2k possibilities. That is,
there is an integer w so that every block of length k occurs either w times or
w + 1 times in a. The number of blocks of length k that occur w + 1 times is
q − 1 (mod 2k), and the number of blocks of length k that occur w times is
2k − (q − 1 (mod 2k)).

Proof. The first statement is explicitly given in [1] Theorem 1 (for the corre-
sponding 1/q sequence). The second statement follows immediately: let Q be
the number of blocks of length k that occur w + 1 times in a. Then

q − 1 = Q(w + 1) + (2k − Q)w
= 2kw + Q.

It follows that Q = q − 1 (mod 2k), as claimed. �

Throughout the remainder of this section we fix prime numbers q and r such that
2 is a primitive root modulo q and also modulo r. Let a = (a0, a1, · · · ) and b =
(b0, b1, · · · ) be binary �-sequences with connection integers q and r respectively,
(and thus periods q − 1 and r − 1 respectively). We will further assume that 4
divides q − 1, and that 4 does not divide r− 1, so that gcd(q − 1, r− 1) = 2. Let
c = a ⊕ b be the sequence obtained as sum, modulo 2 (or the exclusive or) of
these two sequences: ci = ai ⊕ bi (mod 2). According to Corollary 1, the period
of the sequence c is maximal, and is equal to (q − 1)(r − 1)/2.

Lemma 2. Let 0 ≤ i < q−1 and 0 ≤ j < r−1. Then in a full period of c, ai is
combined with bj if and only if j and i have the same parity. That is, there are
integers k and l with i + k(q − 1) = j + l(r − 1) if and only if i ≡ j (mod 2) .

Proof. This is an application of the Euclidean theorem. The integer 2 is the
greatest common divisor q − 1 and r − 1. The integers i and j have the same
parity if and only if i − j is a multiple of 2, which by the Euclidean theorem is
equivalent to the existence of k and l. �

Lemma 3. Within any single period, the second half of the sequence c = a⊕ b
is the complement of the first half.

Proof. The second half of a period of the sequence a is the complement of the
first half and the same is true for the sequence b. Let T = (q − 1)(r − 1)/2 be
the period of c. Then

T

2
=

q − 1
2

· r − 1
2

=
q − 1

2
· odd =

r − 1
2

· even.
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Therefore aj+T/2 = aj and bj+T/2 = bj whenever 0 ≤ j < T/2. Here, aj denotes
the complement of aj ∈ Z/(2). Hence, for these values of j,

cj+T/2 = aj ⊕ bj = cj

which proves the lemma. �

Theorem 3. Fix k ≥ 0. Let Q = q − 1 (mod 2k) and let R = r − 1 (mod 2k).
Define

s =
min(Q, R) − max(0, Q + R − 2k)

2
.

Then the number of occurrences of a block e = (e0, e2, · · · , ek−1) of size k in
the sequence c = a ⊕ b varies at most by s as the block e varies over all 2k

possibilities.

Proof. Let b(1) = (b1, b2, · · · ) be the shift of the sequence b by one. Then we
claim that the sequence

d = a ⊕ b(1)

is a shift of the sequence c = a⊕ b.
To prove this claim, note that because (r−3)/2 is even and gcd(r−1, q−1) = 2,

there exist integers � and m such that

r − 3
2

= m(q − 1) − �(r − 1).

That is,

m(q − 1) =
r − 3

2
+ �(r − 1).

Therefore, for all j,

dj+m(q−1) = aj+m(q−1) ⊕ b
(1)

j+ r−3
2 +�(r−1)

= aj+m(q−1) ⊕ bj+ r−1
2 +�(r−1)

= aj ⊕ bj+ r−1
2

= aj ⊕ bj

= cj .

since d is obtained by shifting b by one before adding it to a. By Lemma 3 the
sequence c is a shift of its complement, so d is also a shift of c.

Therefore, if we count the occurrences of each block of a fixed length k in both
c and d, then for each block we will have exactly twice the number of occurrences
of that block in c. However, in the construction of these two sequences, each
occurrence of each block of length k in a is matched with each occurrence of
each block of length k in b. Thus to count the occurrences of a block e of length
k in c, we want to count the number of pairs (i, j) where i is an occurrence of
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a block f in a, j is an occurrence of a block g in b, and f ⊕ g = e. That is,
g = f ⊕ e. Thus we sum over all blocks f of length k the number of occurrences
of f in a times the number of occurrences of f ⊕ e in b.

Let w denote the minimum number of occurrences of a block of length k in a,
so that by Theorem 2 every possible block of length k occurs either w or w + 1
times. Similarly, let z denote the minimum number of occurrences of a block of
length k in b, so that every possible block of length k occurs either z or z + 1
times. For a fixed block e of length k, as we have seen, the occurrences of a block
f of length k in a are matched with the occurrences of block e ⊕ f in b. There
are four possibilities:

1. f occurs w times in a and e ⊕ f occurs z times in b;
2. f occurs w + 1 times in a and e ⊕ f occurs z times in b;
3. f occurs w times in a and e ⊕ f occurs z + 1 times in b;
4. f occurs w + 1 times in a and e ⊕ f occurs z + 1 times in b.

Let Yi denote the number of fs in case i above, i = 1, 2, 3, 4. Then the number
of occurrences of e in c is

Ne =
wzY1 + (w + 1)zY2 + w(z + 1)Y3 + (w + 1)(z + 1)Y4

2
. (4)

We have Y2 + Y4 = Q since cases (2) and (4) together account for all the blocks
f that occur w+1 times in a. Similarly, Y3 +Y4 = R, and Y1 +Y2 +Y3 +Y4 = 2k.
Thus Y1 = 2k−Q−R+Y4, Y2 = Q−Y4, and Y3 = R−Y4. Therefore, substituting
these values into (4) gives

Ne =
wz2k + zQ + wR + Y4

2
.

It follows that the possible variation in Ne is one half the possible variation in Y4.
By the definition of Y4 we have Y4 ≤ min(Q, R) and Y4 ≥ 0. Also, Y2 ≤ 2k − R,
so that Y4 = Q − Y2 ≥ Q + R − 2k. It follows that the possible variation in Y4

for various e is at most

min(Q, R) − max(0, Q + R − 2k).

The theorem follows immediately from this. �

Corollary 2. The sequence c is balanced and the distribution of consecutive
pairs in c is uniform.

Proof. Balance follows from the case of Theorem 3 when k = 1. The uniform
distribution of pairs follows from Theorem 3 with k = 2. In both cases the bound
s in the theorem equals zero. �

It follows from Theorem 3 that the sequence c = a ⊕ b is highly uniform if
min(Q, R) − max(0, Q + R − 2k) is small for all small k.

A small amount of experimental evidence indicates that this bound is very
close to optimal, in the sense that there are blocks of length k whose numbers
of occurrences differ by almost min(Q, R) − max(0, Q + R − 2k)/2. Further ex-
perimentation is planned.
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5 Conclusions

It is apparent from these results how to look for pairs of �-sequences whose
exclusive ors have large period and for small k have near uniform distribution of
blocks of length k. This situation is an improvement over the situations for many
sequence generators that have been proposed previously as components of stream
ciphers – in many cases the period has not even been computed. On the basis
of experimentation we believe that our exclusive or sequences have other good
properties such as large 2-adic complexity. Before they are used as components
in stream cipher construction, however, we need to test them with the NIST test
suite and examine their resistance to other attacks such as correlation attacks
and algebraic attacks.
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